DOI QR코드

DOI QR Code

Ganodermanontriol Suppresses the Progression of Lung Adenocarcinoma by Activating CES2 to Enhance the Metabolism of Mycophenolate Mofetil

  • Qingfeng Xie (Respiratory Department, Longquan People's Hospital) ;
  • Zhuo Cao (Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University) ;
  • Weiling You (Respiratory Department, Longquan People's Hospital) ;
  • Xiaoping Cai (Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University) ;
  • Mei Shen (Longquan People's Hospital) ;
  • Zhangyong Yin (Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University) ;
  • Yiwei Jiang (Wenzhou Medical University) ;
  • Xin Wang (Wenzhou Medical University) ;
  • Siyu Ye (School of Public Administration, Wenzhou Medical University)
  • 투고 : 2023.06.09
  • 심사 : 2023.09.20
  • 발행 : 2024.02.28

초록

New anti-lung cancer therapies are urgently required to improve clinical outcomes. Since ganodermanontriol (GDNT) has been identified as a potential antineoplastic agent, its role in lung adenocarcinoma (LUAD) is investigated in this study. Concretely, lung cancer cells were treated with GDNT and/or mycophenolate mofetil (MMF), after which MTT assay, flow cytometry and Western blot were conducted. Following bioinformatics analysis, carboxylesterase 2 (CES2) was knocked down and rescue assays were carried out in vitro. Xenograft experiment was performed on mice, followed by drug administration, measurement of tumor growth and determination of CES2, IMPDH1 and IMPDH2 expressions. As a result, the viability of lung cancer cells was reduced by GDNT or MMF. GDNT enhanced the effects of MMF on suppressing viability, promoting apoptosis and inducing cell cycle arrest in lung cancer cells. GDNT up-regulated CES2 level, and strengthened the effects of MMF on down-regulating IMPDH1 and IMPDH2 levels in the cells. IMPDH1 and IMPDH2 were highly expressed in LUAD samples. CES2 was a potential target for GDNT. CES2 knockdown reversed the synergistic effect of GDNT and MMF against lung cancer in vitro. GDNT potentiated the role of MMF in inhibiting tumor growth and expressions of CES2 and IMPDH1/2 in lung cancer in vivo. Collectively, GDNT suppresses the progression of LUAD by activating CES2 to enhance the metabolism of MMF.

키워드

과제정보

This work was supported by the Zhejiang Provincial Medical and Health Project [2023587787]; the Zhejiang Provincial Science and Technology Department Project [LGF22H010012]; the Longquan Science and Technology Bureau Project [2021KJ-003]; the Zhejiang Provincial Medical and Health Research Project [2021KY1235]; the Lishui Science and Technology Bureau Project [2020077571].

참고문헌

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71: 209-249. https://doi.org/10.3322/caac.21660
  2. Herbst RS, Morgensztern D, Boshoff C. 2018. The biology and management of non-small cell lung cancer. Nature 553: 446-454. https://doi.org/10.1038/nature25183
  3. Luo C, Lei M, Zhang Y, Zhang Q, Li L, Lian J, et al. 2020. Systematic construction and validation of an immune prognostic model for lung adenocarcinoma. J. Cell. Mol. Med. 24: 1233-1244. https://doi.org/10.1111/jcmm.14719
  4. Nooreldeen R, Bach H. 2021. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 22: 8661.
  5. Kadara H, Scheet P, Wistuba, II, Spira AE. 2016. Early events in the molecular pathogenesis of lung cancer. Cancer Prev. Res. 9: 518-527. https://doi.org/10.1158/1940-6207.CAPR-15-0400
  6. Duma N, Santana-Davila R, Molina JR. 2019. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 94: 1623-1640. https://doi.org/10.1016/j.mayocp.2019.01.013
  7. Soccol CR, Bissoqui LY, Rodrigues C, Rubel R, Sella SR, Leifa F, et al. 2016. Pharmacological properties of biocompounds from spores of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes): a review. Int. J. Med. Mushrooms 18: 757-767. https://doi.org/10.1615/IntJMedMushrooms.v18.i9.10
  8. Chan SW, Tomlinson B, Chan P, Lam CWK. 2021. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. Pharm. Biol. 59: 1161-1171. https://doi.org/10.1080/13880209.2021.1969413
  9. Sohretoglu D, Huang S. 2018. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Agents Med. Chem. 18: 667-674. https://doi.org/10.2174/1871520617666171113121246
  10. Shao Y, Qiao L, Wu L, Sun X, Zhu D, Yang G, et al. 2016. Structure identification and anti-cancer pharmacological prediction of triterpenes from Ganoderma lucidum. Molecules 21: 678.
  11. Barbieri A, Quagliariello V, Del Vecchio V, Falco M, Luciano A, Amruthraj NJ, et al. 2017. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 9: 210.
  12. Liu W, Yuan R, Hou A, Tan S, Liu X, Tan P, et al. 2020. Ganoderma triterpenoids attenuate tumour angiogenesis in lung cancer tumour-bearing nude mice. Pharm. Biol. 58: 1061-1068. https://doi.org/10.1080/13880209.2020.1839111
  13. Zhu J, Xu J, Jiang LL, Huang JQ, Yan JY, Chen YW, et al. 2019. Improved antitumor activity of cisplatin combined with Ganoderma lucidum polysaccharides in U14 cervical carcinoma-bearing mice. Kaohsiung J. Med. Sci. 35: 222-229. https://doi.org/10.1002/kjm2.12020
  14. Li X, Xie Y, Yang BB. 2018. Characterizing novel anti-oncogenic triterpenoids from ganoderma. Cell Cycle 17: 527-528. https://doi.org/10.1080/15384101.2017.1315493
  15. Jiang J, Jedinak A, Sliva D. 2011. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem. Biophys. Res. Commun. 415: 325-329. https://doi.org/10.1016/j.bbrc.2011.10.055
  16. Jedinak A, Thyagarajan-Sahu A, Jiang J, Sliva D. 2011. Ganodermanontriol, a lanostanoid triterpene from Ganoderma lucidum, suppresses growth of colon cancer cells through ss-catenin signaling. Int. J. Oncol. 38: 761-767.
  17. Xu C, Guo H, Kong D, Pang D, Ding Y. 2018. Ganodermanontriol inhibits expression of special AT rich sequence binding protein 1 gene in human hepatocellular carcinoma. J. Cancer Res. Ther. 14: S964-s968. https://doi.org/10.4103/0973-1482.203597
  18. Zou LW, Jin Q, Wang DD, Qian QK, Hao DC, Ge GB, et al. 2018. Carboxylesterase inhibitors: an update. Curr. Med. Chem. 25: 1627-1649. https://doi.org/10.2174/0929867325666171204155558
  19. Chen F, Zhang B, Parker RB, Laizure SC. 2018. Clinical implications of genetic variation in carboxylesterase drug metabolism. Exp. Opin. Drug Metab. Txicol. 14: 131-142. https://doi.org/10.1080/17425255.2018.1420164
  20. Lam SW, van der Noort V, van der Straaten T, Honkoop AH, Peters GJ, Guchelaar HJ, et al. 2018. Single-nucleotide polymorphisms in the genes of CES2, CDA and enzymatic activity of CDA for prediction of the efficacy of capecitabine-containing chemotherapy in patients with metastatic breast cancer. Pharm. Res. 128: 122-129. https://doi.org/10.1016/j.phrs.2017.08.005
  21. Zhang Y, Sun L, Sun Y, Chen Y, Wang X, Xu M, et al. 2020. Overexpressed CES2 has prognostic value in CRC and knockdown CES2 reverses L-OHP-resistance in CRC cells by inhibition of the PI3K signaling pathway. Exp. Cell Res. 389: 111856.
  22. Ciliao HL, Camargo-Godoy RBO, Souza MF, Zanuto A, Delfino VDA, Colus IMS. 2018. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836: 97-102. https://doi.org/10.1016/j.mrgentox.2018.06.008
  23. Parlakpinar H, Gunata M. 2021. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol. Immunotoxicol. 43: 651-665. https://doi.org/10.1080/08923973.2021.1966033
  24. Chen X, Zhao Y, Wang D, Lin Y, Hou J, Xu X, et al. 2021. The HNF4α-BC200-FMR1-positive feedback loop promotes growth and metastasis in invasive mucinous lung adenocarcinoma. Cancer Res. 81: 5904-5918. https://doi.org/10.1158/0008-5472.CAN-21-0980
  25. Naffouje R, Grover P, Yu H, Sendilnathan A, Wolfe K, Majd N, et al. 2019. Anti-tumor potential of IMP dehydrogenase inhibitors: a century-long story. Cancers 11: 1346.
  26. Keppeke GD, Andrade LEC, Barcelos D, Fernandes M, Landman G. 2020. IMPDH-based cytoophidium structures as potential theranostics in cancer. Mol. Ther. 28: 1557-1558. https://doi.org/10.1016/j.ymthe.2020.06.006
  27. Stracke S, Ramudo L, Keller F, Henne-Bruns D, Mayer JM. 2006. Antiproliferative and overadditive effects of everolimus and mycophenolate mofetil in pancreas and lung cancer cells in vitro. Transplant. Proc. 38: 766-770. https://doi.org/10.1016/j.transproceed.2006.01.030
  28. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. 2017. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19: 649-658. https://doi.org/10.1016/j.neo.2017.05.002
  29. Daina A, Michielin O, Zoete V. 2019. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47: W357-w364. https://doi.org/10.1093/nar/gkz382
  30. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  31. Yang Z, Zhang L, Zhu H, Zhou K, Wang H, Wang Y, et al. 2021. Nanoparticle formulation of mycophenolate mofetil achieves enhanced efficacy against hepatocellular carcinoma by targeting tumour-associated fibroblast. J. Cell. Mol. Med. 25: 3511-3523. https://doi.org/10.1111/jcmm.16434
  32. Kennedy EM, P'Pool SJ, Jiang J, Sliva D, Minto RE. 2011. Semisynthesis and biological evaluation of ganodermanontriol and its stereoisomeric triols. J. Nat. Prod. 74: 2332-2337. https://doi.org/10.1021/np200205n
  33. Wang M, Herbst RS, Boshoff C. 2021. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 27: 1345-1356. https://doi.org/10.1038/s41591-021-01450-2
  34. Guo J, Yuan C, Huang M, Liu Y, Chen Y, Liu C, et al. 2018. Ganoderma lucidum-derived polysaccharide enhances coix oil-based microemulsion on stability and lung cancer-targeted therapy. Drug Deliv. 25: 1802-1810. https://doi.org/10.1080/10717544.2018.1516006
  35. Feng L, Yuan L, Du M, Chen Y, Zhang MH, Gu JF, et al. 2013. Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules 18: 9966-9981. https://doi.org/10.3390/molecules18089966
  36. Zolj S, Smith MP, Goines JC, Ali TS, Huff MO, Robinson DL, et al. 2018. Antiproliferative effects of a rriterpene-enriched extract from lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), on human lung cancer cells. Int. J. Med. Mushrooms 20: 1173-1183. https://doi.org/10.1615/IntJMedMushrooms.2018028823
  37. Wang T, Xie ZP, Huang ZS, Li H, Wei AY, Di JM, et al. 2015. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis. J. Huazhong Univ. Sci. Technol. Med. Sci. 35: 736-741. https://doi.org/10.1007/s11596-015-1499-x
  38. Wang H, Liu Z, Wu P, Wang H, Ren W. 2021. NUSAP1 accelerates osteosarcoma cell proliferation and cell cycle progression via upregulating CDC20 and cyclin A2. OncoTargets Ther. 14: 3443-3454. https://doi.org/10.2147/OTT.S295818
  39. Chu Z, Zhang X, Li Q, Hu G, Lian CG, Geng S. 2019. CDC20 contributes to the development of human cutaneous squamous cell carcinoma through the Wnt/β-catenin signaling pathway. Int. J. Oncol. 54: 1534-1544. https://doi.org/10.3892/ijo.2019.4727
  40. Hu H, Tou FF, Mao WM, Xu YL, Jin H, Kuang YK, et al. 2022. microRNA-1321 and microRNA-7515 contribute to the progression of non-small cell lung cancer by targeting CDC20. Kaohsiung J. Med. Sci. 38: 425-436.  https://doi.org/10.1002/kjm2.12500
  41. Plunk MA, Quintana JM, Darden CM, Lawrence MC, Naziruddin B, Kane RR. 2021. Design and catalyzed activation of mycophenolic acid prodrugs. ACS Med. Chem. Lett. 12: 812-816. https://doi.org/10.1021/acsmedchemlett.1c00079
  42. Ling G, Lamprecht S, Shubinsky G, Osyntsov L, Yerushalmi B, Pinsk I, et al. 2018. Mycophenolate mofetil alone and in combination with tacrolimus inhibits the proliferation of HT-29 human colonic adenocarcinoma cell line and might interfere with colonic tumorigenesis. Anticancer Res. 38: 3333-3339. https://doi.org/10.21873/anticanres.12599
  43. Silvestris N, Simone G, Partipilo G, Scarpi E, Lorusso V, Brunetti AE, et al. 2014. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int. J. Mol. Sci. 15: 15767-15777. https://doi.org/10.3390/ijms150915767
  44. Winnicki W, Fichtenbaum A, Mitulovic G, Herkner H, Regele F, Baier M, et al. 2022. Individualization of mycophenolic acid therapy through pharmacogenetic, pharmacokinetic and pharmacodynamic testing. Biomedicines 10: 2882.
  45. Siebert A, Deptula M, Cichorek M, Ronowska A, Cholewinski G, Rachon J. 2021. Anticancer properties of amino acid and peptide derivatives of mycophenolic acid. Antcancer Agents Med. Chem. 21: 462-467. https://doi.org/10.2174/1871520620666200516151456
  46. Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, et al. 2018. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div. 13: 5.
  47. Valvezan AJ, McNamara MC, Miller SK, Torrence ME, Asara JM, Henske EP, et al. 2020. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight 5: e135071.
  48. Huang F, Ni M, Chalishazar MD, Huffman KE, Kim J, Cai L, et al. 2018. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 28: 369-382.e365. https://doi.org/10.1016/j.cmet.2018.06.005
  49. Ruan H, Song Z, Cao Q, Ni D, Xu T, Wang K, et al. 2020. IMPDH1/YB-1 positive feedback loop assembles cytoophidia and represents a therapeutic target in metastatic tumors. Mol. Ther. 28: 1299-1313.  https://doi.org/10.1016/j.ymthe.2020.03.001