DOI QR코드

DOI QR Code

Synthesis and physical properties of Pb10-xCux(PO4)6O: A weak diamagnetic material

  • Yoonseok Han (Department of Physics, Sungkyunkwan University) ;
  • Taehee Lee (Department of Physics, Sungkyunkwan University) ;
  • Junwon Rhie (Department of Physics, Sungkyunkwan University) ;
  • Jaegu Song (Department of Physics, Sungkyunkwan University) ;
  • Seung-Yeop Paek (Department of Physics, Sungkyunkwan University) ;
  • Seokmin Choi (Institute of Basic Science, Sungkyunkwan University) ;
  • Yongmin Kim (Department of Physics, Dankook University) ;
  • Sungmin Park (Department of Physics, Sungkyunkwan University) ;
  • Hanoh Lee (Department of Physics, Sungkyunkwan University) ;
  • Tuson Park (Department of Physics, Sungkyunkwan University)
  • Received : 2024.04.01
  • Accepted : 2024.06.14
  • Published : 2024.06.30

Abstract

Recently, Lee et al. claimed that LK-99 isthe first room-temperature superconductor at ambient pressure, which quickly captured the attention of both the scientific community and the general public. We tried to replicate Pb10-xCux(PO4)6O, called as LK-99, and characterized its physical properties by measuring the electrical resistance and Meissner effect. The electrical resistance results for different batches exhibited structural phase transitions at different temperatures, and the magnetic measurements indicated weak diamagnetism at 300 K, which is weaker than that of water. Taken together with the structural analysis, these results suggest that the resistivity transitions are incurred by Cu-S compound generated as a byproduct during the synthesis of LK-99 and LK-99 is not a room-temperature superconductor.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea through grants funded by the Korean Ministry of Science and ICT (grant numbers 2021R1A2C1014319, 2021R1A2C2010925, 2021R1I1A1A01047499, and RS-2023-00220471) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00248099).

References

  1. H. K. Onnes, "The superconductivity of mercury," Commun. Phys. Lab. Univ. Leiden., vol. 122, pp. 124, 1911.
  2. Z. Iqbal, T. Datta, D. Kirven, A. Lungu, J. C. Barry, F. J. Owens, A. G. Rinzler, D. Yang, and F. Reidinger, "Superconductivity above 130 K in the Hg-Pb-Ba-Ca-Cu-O system," Phys. Rev. B, vol. 49, pp. 12322, 1994.
  3. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, "Superconductivity at 250 K in lanthanum hydride under high pressure," Nature, vol. 569, pp. 528-531, 2019. https://doi.org/10.1038/s41586-019-1201-8
  4. P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, "Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure," Nat. Commu., vol. 12, pp. 5075, 2021.
  5. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, "Evidence for superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures," Phys. Rev. Lett., vol. 122, pp. 027001, 2019.
  6. J. G. Bednorz and K. A. Muller, "Possible High Tc Superconductivity in the Ba-La-Cu-O System," Z. Phys. B: Condens. Matt., vol. 64, pp. 189-193, 1986. https://doi.org/10.1007/BF01303701
  7. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, "Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system," Nature, vol. 363, pp. 56-58, 1993. https://doi.org/10.1038/363056a0
  8. S. Lee, J. H. Kim, and Y. W. Kwon, "The First Room- Temperature Ambient-Pressure Superconductor," arXiv:2307.12008, 2023.
  9. S. Lee, J. H. Kim, H. T. Kim, S. Im, S. M. An, and K. H. Auh, "Superconductor Pb10-xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism," arXiv:2307.12037, 2023.
  10. K. Kumar, N. K. Karn, and V. P. S. Awana, "Synthesis of possible room temperature superconductor LK-99: Pb9Cu(PO4)6O," arXiv:2307.16402, 2023.
  11. H. Wu, L. Yang, B. Xiao, and H. Chang, "Successful growth and room temperature ambient-pressure magnetic levitation of LK-99," arXiv:2308.01516, 2023.
  12. P. Abramian, A. Kuzanyan, V. Nikoghosyan, S. Teknowijoyo, and A. Gulian, "Some remarks on possible superconductivity of composition Pb9CuP6O25," arXiv:2308.01723, 2023.
  13. J. Cao and A. Kavokin, "The interplay between exciton- and phonon-induced superconductivity might explain the phenomena observed in LK-99," Mater. Tod. Commu., vol. 37, pp. 107293, 2023.
  14. C. C. Ivan Timokhin, Z. Wang, Q. Yang, and A. Mishchenko, "Synthesis and characterisation of LK-99," arXiv:2308.03823, 2023.
  15. P. K. Jain, "Superionic Phase Transition of Copper(I) Sulfide and Its Implication for Purported Superconductivity of LK-99," J. Phys. Chem. C, vol. 127, no. 37, pp. 18253-18255, 2023. https://doi.org/10.1021/acs.jpcc.3c05684
  16. Q. A. Jun Li, "Deciphering the Enigma of Cu-Doped Lead Apatite (LK-99): Structural Insights, Electronic Properties, and Implications for Ambient-Pressure Superconductivity," arXiv:2309.07928, 2023.
  17. J. Lai, J. Li, P. Liu, Y. Sun, and X.-Q. Chen, "First-principles study on the electronic structure of Pb10-xCux(PO4)6O (x = 0, 1)," J. Mater. Sci. & Technol., vol. 171, pp. 66-70, 2024. https://doi.org/10.1016/j.jmst.2023.08.001
  18. L. Liao, Z. Chen, Y. Tan, and Q. Mei, "Investigation into the nature behind the interesting half levitation behavior of claimed superconductor LK-99," arXiv:2310.08594, 2023.
  19. L. Liu, Z. Meng, X. Wang, H. Chen, Z. Duan, X. Zhou, H. Yan, P. Qin, and Z. Liu, "Semiconducting Transport in Pb10-xCux(PO4)6O Sintered from Pb2SO5 and Cu3P," Adv. Funct. Mater., vol. 33, pp. 2308938, 2023.
  20. O. Tavakol and T. Scaffidi, "Minimal model for the flat bands in copper-substituted lead phosphate apatite: Strong diamagnetism from multi-orbital physics," arXiv:2308.01315, 2023.
  21. P. Puphal, M. Y. P. Akbar, M. Hepting, E. Goering, M. Isobe, A. A. Nugroho, and B. Keimer, "Single crystal synthesis, structure, and magnetism of Pb10-xCux(PO4)6O," APL Mater., vol. 11, pp. 101128, 2023.
  22. Q. Hou, W. Wei, X. Zhou, Y. Sun, and Z. Shi, "Observation of zero resistance above 100 K in Pb10-xCux(PO4)6O," arXiv:2308.01192, 2023.
  23. R. Kurleto, S. Lany, D. Pashov, S. Acharya, M. Schilfgaarde, and D. Dessau, "Pb-apatite framework as a generator of novel flat-band CuO based physics," arXiv:2308.00698, 2023.
  24. S. Zhu, W. Wu, Z. Li, and J. Luo, "First order transition in Pb10-xCux(PO4)6O (0.92S," arXiv:2308.04353, 2023.
  25. S. M. Griffin, "Origin of correlated isolated flat bands in copper-substituted lead phosphate apatite," arXiv:2307.16892, 2023.
  26. K. Guo, Y. Li, and S. Jia, "Ferromagnetic half levitation of LK-99-like synthetic samples," Sci. Chi. Phys., Mech. & Astro., vol. 66, pp. 107411, 2023.
  27. K. Kumar, N. K. Karn, Y. Kumar, and V. P. S. Awana, "Absence of Superconductivity in LK-99 at Ambient Conditions," ACS Omega, vol. 8, pp. 41737-41743, 2023. https://doi.org/10.1021/acsomega.3c06096
  28. C. Liu, W. Cheng, X. Zhang, J. Xu, J. Li, Q. Shi, C. Yuan, L. Xu, H. Zhou, S. Zhu, J. Sun, W. Wu, J. Luo, K. Jin, and Y. Li, "Phases and magnetism at microscale in compounds containing nominal Pb10-xCux(PO4)6O," Phys. Rev. Mater., vol. 7, pp. 084804, 2023.
  29. L. Si and K. Held, "Electronic structure of the putative room-temperature superconductor Pb9Cu(PO4)6O," Phys. Rev. B, vol. 108, pp. L121110, 2023.
  30. T. Habamahoro, T. Bontke, M. Chirom, Z. Wu, J. M. Bao, L. Z. Deng, and C. W. Chu, "Replication and study of anomalies in LK-99 the alleged ambient-pressure, room-temperature superconductor," arXiv:2311.03558, 2023.
  31. P. Wang, X. Liu, J. Ge, C. Ji, H. Ji, Y. Liu, Y. Ai, G. Ma, S. Qi, and J. Wang, "Ferromagnetic and insulating behavior in both half magnetic levitation and non-levitation LK-99 like samples," Quant. Fron., vol. 2, 2023.
  32. S. Yang, G. Liu, and Y. Zhong, "Ab initio investigations on the electronic properties and stability of Cu-substituted lead apatite (LK-99) family with different doping concentrations (x = 0, 1, 2)," Mater. Tod. Commu., vol. 37, pp. 107379, 2023.
  33. Z. Lei, C.-W. Lin, I.-N. Chen, C.-T. Chou, and L.-M. Wang, "The characteristics of LK-99 by Cu2S removal using ammonia solution: A diamagnetic semiconductor," arXiv:2309.17445, 2023.
  34. K. Okamoto and S. Kawai, "Electrical Conduction and Phase Transition of Coptherper Sulfides," Jap. J. Appl. Phys., vol. 12, pp. 1130-1138, 1973. https://doi.org/10.1143/JJAP.12.1130