DOI QR코드

DOI QR Code

Non-clinical safety assessment of Annona atemoya leaf extract: evaluation of genotoxicity

  • Eunjin Sohn (KM Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Bu‑Yeo Kim (KM Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Yu Jin Kim (KM Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Soo‑Jin Jeong (KM Convergence Research Division, Korea Institute of Oriental Medicine)
  • 투고 : 2023.09.20
  • 심사 : 2024.04.23
  • 발행 : 2024.07.15

초록

The leaves, stems, and fruits of Annona atemoya (A. atemoya; AA), a fruit-bearing plant of the family Annonaceae, exhibit anti-angiogenic, anti-oxidative, anti-inflammatory, and neuroprotective activities. However, the safety of AA has not been comprehensively elucidated. In this study, we evaluated the potential genotoxicity of an AA leaf (AAL) ethanol extract using a standard three-test battery constituting in vitro mammalian chromosomal aberration, in vivo micronucleus, and bacterial reverse mutation (also known as the Ames test) tests, as recommended by the Ministry of Food and Drug Safety of Korea. In vitro chromosomal aberration assay revealed that AAL extract did not induce structural or numerical aberrations, with or without metabolic activation (S9). In vivo micronucleus assay revealed that the number of micronucleated polychromatic erythrocytes (PCEs) and the PCE/normochromatic erythrocyte ratio after AAL extract treatment were not substantially different from those in the negative control. Changes in body weight and mortality were not observed. However, AAL extract partially induced mutagenic activity in all three bacterial strains in the bacterial reverse mutation assay, indicating that it could potentially aid in determining the genotoxic safety of AAL. QuantSeq 3' mRNA sequencing analysis to elucidate the genotoxicity mechanisms of AAL extract using TK6 cells revealed that the genotoxic effects of AAL may be associated with cellular morphology-associated (cell development and keratinization), nucleotide metabolism, and electron transport chain functions.

키워드

과제정보

This study was supported by the Korea Institute of Oriental Medicine (KIOM, Grant No. KSN1515293), and the National Research Foundation of Korea (NRF) grant (NRF-2020R1A2C2012917), funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

참고문헌

  1. Sen T, Samanta SK (2015) Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol 147:59-110. https://doi.org/10.1007/10_2014_273 
  2. Akkol EK, Cankaya IT, Karatoprak GS et al (2021) Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front Pharmacol 12:669638. https://doi.org/10.3389/fphar.2021.669638 
  3. Lim MK, Kim JY, Jeong J et al (2021) Evaluation of subchronic Toxicity and genotoxicity of ethanolic extract of Aster glehni leaves and stems. Evid Based Complement Alternat Med 2021:1018101. https://doi.org/10.1155/2021/1018101 
  4. Roberts SM, James RC, Williams PL (2015) Principles of toxicology: environmental and industrial applications. Wiley, Hoboken 
  5. Posadzki P, Watson LK, Ernst E (2013) Adverse effects of herbal medicines: an overview of systematic reviews. Clin Med 13:7-12. https://doi.org/10.7861/clinmedicine.13-1-7 
  6. Zhou J, Ouedraogo M, Qu F, Duez P (2013) Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: an overview. Phytother Res 27:1745-1755. https://doi.org/10.1002/ptr.4942 
  7. Morton JF, Dowling CF (1987) Fruits of warm climates. Distributed by Creative Resources System, Miami 
  8. Kazman BSMA, Harnett JE, Hanrahan JR (2020) The phytochemical constituents and pharmacological activities of Annona atemoya: a systematic review. Pharmaceuticals (Basel) 13:269. https://doi.org/10.3390/ph13100269 
  9. Tiangda CH, Gritsanapan W, Sookvanichsilp N, Limchalearn A (2000) Anti-headlice activity of a preparation of Annona squamosa seed extract. Southeast Asian J Trop Med Public Health 31(Suppl 1):174-177 
  10. Yi J-M, Park J-S, Lee J et al (2014) Anti-angiogenic potential of an ethanol extract of Annona atemoya seeds in vitro and in vivo. BMC Complement Altern Med 14:353. https://doi.org/10.1186/1472-6882-14-353 
  11. Nugraha AS, Damayanti YD, Wangchuk P, Keller PA (2019) Anti-infective and anti-cancer properties of the Annona species: their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules 24:4419. https://doi.org/10.3390/molecules24234419 
  12. Mannino G, Gentile C, Porcu A et al (2020) Chemical profle and biological activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) leaves. Molecules 25:2612. https://doi.org/10.3390/molecules25112612 
  13. Rabelo SV, Costa M, Liborio RC (2014) Almeida JRGdS: antioxidant and antimicrobial activity of extracts from atemoia (Annona cherimola Mill. × A. squamosa L.). Rev Bras Frutic 36:265-271. https://doi.org/10.3390/ph13100269 
  14. Do Hallison NS, Suzana VR, Tamara CD et al (2017) Antinociceptive and anti-inflammatory activities of ethanolic extract from atemoya (Annona cherimola Mill × Annona squamosa L.). Afr J Pharm Pharmacol 11:224-232. https://doi.org/10.5897/ajpp2017.4778 
  15. Sohn E, Lim H-S, Kim YJ et al (2019) Annona atemoya leaf extract improves scopolamine-induced memory impairment by preventing hippocampal cholinergic dysfunction and neuronal cell death. Int J Mol Sci 20:3538. https://doi.org/10.3390/ijms20143538 
  16. Lim H-S, Kim YJ, Sohn E et al (2019) Annona atemoyaleaf extract ameliorates cognitive impairment in amyloid-β injected Alzheimer's disease-like mouse model. Exp Biol Med (Maywood) 244:1665-1679. https://doi.org/10.1177/1535370219886269 
  17. Fu B, Wang N, Tan H-Y et al (2018) Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol 9:1394. https://doi.org/10.3389/fphar.2018.01394 
  18. Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891-3914. https://doi.org/10.1016/j.biomaterials.2009.04.009 
  19. Registre M, Proudlock R (2016) The in vitro chromosome aberration test. In: Genetic toxicology testing. Academic Press, Cambridge, pp 207-267 
  20. Honma M (1999) Evaluation of the mouse lymphoma TK assay (microwell method) as an alternative to the in vitro chromosomal aberration test. Mutagenesis 14:5-22. https://doi.org/10.1093/mutage/14.1.5 
  21. OECD (2019) OECD principles of good laboratory practice. Series on principles of good laboratory practice (GLP) and compliance monitoring, No 20. OECDiLibrary, Paris. https://doi.org/10.1787/2077785x 
  22. OECD (2016) Test no. 474: mammalian erythrocyte micronucleus test. OECDiLibrary, Paris. https://doi.org/10.1787/97892642647621_en 
  23. Schmid W (1975) The micronucleus test. Mutat Res Environ Mutag Related Subj 31:9-15. https://doi.org/10.1016/0165-1161(75)90058-8 
  24. OECD (2020) Test no. 471: bacterial reverse mutation test. OECDiLibrary, Paris. https://doi.org/10.1787/9789264071247_en 
  25. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21. https://doi.org/10.1093/bioinformatics/bts635 
  26. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80 
  27. De Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453-1454. https://doi.org/10.1093/bioinformatics/bth078 
  28. Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:3. https://doi.org/10.1186/gb-2003-4-9-r60 
  29. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093. https://doi.org/10.1093/bioinformatics/btp101 
  30. Korean Ministry of Food and Drug Safety Web (2019) Guidelines for nonclinical testing of herbal product. http://www.nifds.go.kr/brd/0290-02. Accessed 2 Apr 2019 
  31. Clare G (2012) The in vitro mammalian chromosome aberration test. Methods Mol Biol 817:69-91. https://doi.org/10.1007/978-1-61779-421-6_5 
  32. Lee S-B, Lee J-S, Wang J-H et al (2021) Genotoxicity of water extract from bark-removed Rhus verniciflua Stokes. Molecules 26:896. https://doi.org/10.3390/molecules26040896 
  33. Kim NS, Shin S, Shin G-G, Bang O-S (2019) Genotoxicity evaluation of a Phragmitis rhizoma extract using a standard battery of in vitro and in vivo assays. J Ethnopharmacol 241:112025. https://doi.org/10.1016/j.jep.2019.112025 
  34. Lee MY, Park Y-C, Jin M et al (2018) Genotoxicity evaluation of So-ochim-tang-gamibang (SOCG), a herbal medicine. BMC Complement Altern Med 18:47. https://doi.org/10.1186/s12906-018-2111-2 
  35. Lovell DP, Fellows M, Marchetti F et al (2018) Analysis of negative historical control group data from the in vitro micronucleus assay using TK6 cells. Mutat Res Genet Toxicol Environ Mutagen 825:40-50. https://doi.org/10.1016/j.mrgentox.2017.10.006 
  36. Lewis DFV, Ioannides C, Parke DV (1993) Validation of a novel molecular orbital approach (COMPACT) for the prospective safety evaluation of chemicals, by comparison with rodent carcinogenicity and Salmonella mutagenicity data evaluated by the U.S. NCI/NTP Mutat Res-Environ Mutag Related Subj 291:61-77. https://doi.org/10.1016/0165-1161(93)90018-u 
  37. Hong C-E, Lyu S-Y (2013) Evaluation of the mutagenic properties of two lignans from Acanthopanax koreanum Nakai. Toxicol Res 29:279-283. https://doi.org/10.5487/tr.2013.29.4.279 
  38. Oliveira NdMS, Resende MR, Morales DA, De Ragao UG, Boriollo MFG (2016) In vitro mutagenicity assay (Ames test) and phytochemical characterization of seeds oil of Helianthus annuus Linne (sunflower). Toxicol Rep 3:733-739. https://doi.org/10.1016/j.toxrep.2016.09.006 
  39. Platel A, Gervais V, Sajot N et al (2010) Study of gene expression profiles in TK6 human cells exposed to DNA-oxidizing agents. Mutat Res 689:21-49. https://doi.org/10.1016/j.mrfmmm.2010.04.004 
  40. Kuehner S, Holzmann K, Speit G (2013) Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 87:1999-2012. https://doi.org/10.1007/s00204-013-1060-2 
  41. Suh SK, Kim TG, Kim HJ et al (2007) Gene expression in profiling of genotoxicity induced by MNNG in TK6 cells. Mol Cell Toxicol 3:98-106. https://doi.org/10.1016/j.mrfmmm.2010.04.004 
  42. Li HH, Hyduke DR, Chen R et al (2015) Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells. Environ Mol Mutagen 56:505-519. https://doi.org/10.1002/em.21941 
  43. Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. Mol Toxicol 99:87-110. https://doi.org/10.1007/978-3-7643-8336-7_4 
  44. Wang Y, Su M, Chen Y et al (2023) Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 14:1234280. https://doi.org/10.3389/fendo.2023.1234280 
  45. Chen ACH, Peng Q, Fong SW et al (2021) DNA damage response and cell cycle regulation in pluripotent stem cells. Genes (Basel) 12:1548. https://doi.org/10.3390/genes12101548 
  46. Lombardo G, Melzi G, Indino S et al (2022) Keratin 17 as a marker of UVB-induced stress in human epidermis and modulation by vitis vinifera extract. Cells Tissues Organs 211:611-627. https://doi.org/10.1159/000520038 
  47. Dos Santos CP, Londero JEL, Dos Santos MB et al (2018) Sunlight-induced genotoxicity and damage in keratin structures decrease tadpole performance. J Photochem Photobiol B 181:134-142. https://doi.org/10.1016/j.jphotobiol.2018.03.013 
  48. Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M (2021) Genomic instability and cancer risk associated with erroneous DNA repair. Int J Mol Sci 22:12254. https://doi.org/10.3390/ijms222212254 
  49. Wu HL, Gong Y, Ji P, Xie YF et al (2022) Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 15:45. https://doi.org/10.1186/s13045-022-01263-x 
  50. Jia F, Chi C, Han M (2020) Regulation of nucleotide metabolism and germline proliferation in response to nucleotide imbalance and genotoxic stresses by EndoU nuclease. Cell Rep 30:1848- 1861.e5. https://doi.org/10.1016/j.celrep.2020.01.050 
  51. Park H, Lee JY, Lim W, Song G (2021) Assessment of the in vivo genotoxicity of pendimethalin via mitochondrial bioenergetics and transcriptional profiles during embryogenesis in zebrafish: implication of electron transport chain activity and developmental defects. J Hazard Mater 411:125153. https://doi.org/10.1016/j.jhazmat.2021.125153 
  52. Gunaydin-Akyildiz A, Aksoy N, Boran T et al (2022) Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells. Toxicol Lett 371:9-16. https://doi.org/10.1016/j.toxlet.2022.09.011 
  53. Ananthi R, Chandra N, Santhiya ST, Ramesh A (2010) Genotoxic and antigenotoxic effects of Hemidesmus indicus R. Br. root extract in cultured lymphocytes. J Ethnopharmacol 127:558-560. https://doi.org/10.1016/j.jep.2009.10.034 
  54. Fateh AH, Mohamed Z, Chik Z et al (2019) Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley rats. J Ethnopharmacol 235:88-99. https://doi.org/10.1016/j.jep.2019.02.007 
  55. Gollapudi BB, Krishna G (2000) Practical aspects of mutagenicity testing strategy: an industrial perspective. Mutat Res 455:21-28. https://doi.org/10.1016/s0027-5107(00)00114-7 
  56. Walmsley RM, Billinton N (2011) How accurate is in vitro prediction of carcinogenicity? Genotoxicity testing. Br J Pharmacol 162:1250-1258. https://doi.org/10.1111/j.1476-5381.2010.01131.x 
  57. Verschaeve L (2015) Genotoxicity and antigenotoxicity studies of traditional medicinal plants: How informative and accurate are the results? Nat Prod Commun 10:1934578X1501000. https://doi.org/10.1177/1934578x1501000843 
  58. Eren Y, Ozata A (2014) Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Rev Bras Farmacogn 24:51-59. https://doi.org/10.1590/0102-695x20142413322 
  59. da Silva Dantas FG, de Castilho PF, de Almeida-Apolonio AA et al (2020) Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: a systematic review. Mutat Res Rev Mutat Res 786:108338. https://doi.org/10.1016/j.mrrev.2020.108338 
  60. Fei C, Zhang J, Lin Y et al (2015) Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul Toxicol Pharmacol 71:585-589. https://doi.org/10.1016/j.yrtph.2015.01.011 
  61. Kirkland D, Reeve L, Gatehouse D, Vanparys P (2011) A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res Genet Toxicol Environ Mutagen 721:27-73. https://doi.org/10.1016/j.mrgentox.2010.12.015 
  62. Langie SAS, Azqueta A, Collins AR (2015) The comet assay: past, present, and future. Front Genet 6:266. https://doi.org/10.3389/fgene.2015.00266 
  63. Wu M-F, Peng F-C, Chen Y-L et al (2011) Evaluation of genotoxicity of Antrodia cinnamomea in the Ames test and the in vitro chromosomal aberration test. In Vivo 25:419-423