DOI QR코드

DOI QR Code

Characterization of the Manufacturing Process and Mechanical Properties of CoCrFeMnNi High-Entropy Alloys via Metal Injection Molding and Hot Isostatic Pressing

  • Eun Seong Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Jae Man Park (Department of mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Do Won Lee (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Hyojeong Ha (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Jungho Choe (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Jaemin Wang (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Seong Jin Park (Department of mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Byeong-Joo Lee (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Hyoung Seop Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2024.04.15
  • Accepted : 2024.05.27
  • Published : 2024.06.28

Abstract

High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200℃, 1250℃, and 1275℃. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150℃) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275℃ MIM process. The HIP process can improve the quality of the alloy.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of the Republic of Korea (2021R1A2C3006662 and 2022R1A5A1030054). Eun Seong Kim is also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A6A3A13073830).

References

  1. M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel: Renew. Sustain. Energy Rev., 146 (2021) 111180.
  2. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie: Science., 6201 (2014) 1153.
  3. E. P. George, D. Raabe, and R. O. Ritchie: Nat. Rev. Mater., 4 (2019) 515.
  4. H. Luo, Z. Li, W. Lu, D. Ponge, and D. Raabe: Corros. Sci., 136 (2018) 403.
  5. Y. Fu, J. Li, H. Luo, C. Du, and X. Li: J. Mater. Sci. Technol., 80 (2021) 217.
  6. Z. Pu, Y. Chen, and L. H. Dai: Mater. Sci. Eng. A., 736 (2018) 156.
  7. R. B. Mane, R. Y, and B. B. Panigrahi: Powder Metallurgy., 61 (2018) 131.
  8. F. Otto, A. Dlouhy, K. G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, and E. P. George: Acta Mater., 112 (2016) 40.
  9. E. S. Kim, K. R. Ramkumar, G. M. Karthik, S. G. Jeong, S. Y. Ahn, P. Sathiyamoorthi, H. Park, Y. -U. Heo, and H. S. Kim: J. Alloys Compd., 942 (2023) 169062.
  10. J. H. Kim, K. R. Lim, J. W. Won, Y. S. Na, and H.-S. Kim: Mater. Sci. Eng. A., 712 (2018) 108.
  11. G. H. Gu, E. S. Kim, H. Kwon, S. Son, R. E. Kim, T. K. Oh, and H. S. Kim: Mater. Sci. Eng. A., 836 (2022) 142718.
  12. S. Y. Ahn, D. G. Kim, J. A. Lee, E. S. Kim, S. G. Jeong, R. E. Kim, S.-J. Hong, P. Quang, S. Lee, and H. S. Kim: J. Alloys Compd., 960 (2023) 170602.
  13. A. Piglione, B. Dovgyy, C. Liu, C. M. Gourlay, P. A. Hooper, and M. S. Pham: Mater. Lett., 224 (2018) 22.
  14. G. M. Karthik, Y. Kim, E. S. Kim, A. Zargaran, P. Sathiyamoorthi, J. M. Park, S. G. Jeong, G. H. Gu, A. Amanov, T. Ungar, and H. S. Kim: Addit. Manuf., 59 (2022) 103131.
  15. Z. Xu, Z. Zhu, P. Wang, G. K. Meenashisundaram, S. M. L. Nai, and J. Wei: Addit. Manuf., 35 (2020) 101441.
  16. G. M. Karthik, P. Asghari-rad, P. Sathiyamoorthi, A. Zargaran, E. S. Kim, T. S. Kim, and H. S. Kim: Scr. Mater., 195 (2021) 113722.
  17. Y. Zhang, T. Bian, X. Shen, Z. Wang, S. Ye, S. Feng, K. Yu, C. Ding, and P. Yu: J. Alloys Compd., 868 (2021) 158711.
  18. E. S. Kim, J. M. Park, J. S. Lee, J. Choe, S. Y. Ahn, S. G. Jeong, D. W. Lee, S. J. Park, and H. S. Kim: J. Powder Mater., 30 (2023) 1.
  19. A. O. Araoyinbo, F. A. Ishola, E. Y. Salawu, M. B. Biodun, and A. U. Samuel: AIP Conf. Proc., 2437 (2022) 020153.
  20. S. V. Atre, T. J. Weaver, and R. M. German: Injection Molding of Metals and Ceramics, SAE Technical Paper (1998) 982417.
  21. F. Ternero, L. G. Rosa, P. Urban, J. M. Montes, and F. G. Cuevas: Metals., 11 (2021) 730.
  22. D. F. Heaney: Handbook of metal injection molding, Woodhead Publishing (2018)
  23. J. O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman: Calphad., 26 (2002) 273.
  24. B.-J. Lee and B. Sundman: TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, KTH, Stockholm (1999)
  25. W.-M. Choi, Y. H. Jo, D. G. Kim, S. S. Sohn, S. Lee, and B.-J. Lee: J. Phase Equilibria Diffus., 39 (2018) 694.
  26. W.-M. Choi, Y. H. Jo, D. G. Kim, S. S. Sohn, S. Lee, and B.-J. Lee: Calphad., 66 (2019) 101624.
  27. H.-S. Do, W.-M. Choi, and B.-J. Lee: J. Mater. Sci., 57 (2022) 1373.
  28. H.-S. Do, T. J. Jang, K. J. Kim, S. S. Sohn, and B.-J. Lee: Mater. Sci. Eng. A., 859 (2022) 144220.
  29. J. Capek and D. Vojtech: Mater. Sci. Eng. C., 43 (2014) 494.
  30. E. S. Kim, F. Haftlang, S. Y. Ahn, G. H. Gu, and H. S. Kim: J. Alloys Compd., 907 (2022) 164415.
  31. G. M. Karthik, E. S. Kim, P. Sathiyamoorthi, S. G. Jeong, R. Xiong, S. H. Kang, J.-W. Cho, and H. S. Kim: Addit. Manuf., 47 (2021) 102314.
  32. M. J. Sagong, E. S. Kim, J. M. Park, G. M. Karthik, B.-J. Lee, J.-W. Cho, C. S. Lee, T. Nakano, and H. S. Kim: Mater. Sci. Eng. A., 847 (2022) 143318.
  33. E. S. Kim, F. Haftlang, S. Y. Ahn, H. Kwon, G. H. Gu, and H. S. Kim: J. Mater. Sci., 57 (2022) 17967.
  34. H. Kwon, P. Asghari-Rad, J. M. Park, P. Sathiyamoorthi, J. W. Bae, J. Moon, A. Zargaran, Y. T. Choi, S. Son, and H. S. Kim: Intermetallics., 135 (2021) 107212.
  35. A. E. Tekkaya and K. Lange: CIRP Annals., 49 (2000) 205.
  36. Z. Shen, R. H. Wagoner, and W. A. T. Clark: Acta Metall., 36 (1988) 3231.
  37. F. Haftlang, E. S. Kim, and H. S. Kim: J. Mater. Process. Technol., 309 (2022) 117733.
  38. H. Zhao, F. De Geuser, A. K. da Silva, A. Szczepaniak, D Ponge, and D. Raabe: Acta Mater., 156 (2018) 318.
  39. E. Hryha, E. Dudrova, and L. Nyborg: Metall. Mater. Trans. A., 41 (2010) 2880.
  40. M. Vaidya, K. Guruvidyathri, and B. S. Murty: J. Alloys Compd., 774 (2019) 856.
  41. M. Vaidya, A. Anupam, J. Vijay Bharadwaj, C. Srivastava, and B. S. Murty: J. Alloys Compd., 791 (2019) 1114.
  42. K. Guruvidyathri, B. S. Murty, J. W. Yeh, and K. C. Hari Kumar: J. Alloys Compd., 768 (2018) 358.
  43. S. Yang, G. Liu, and Y. Zhong: J. Alloys Compd., 916 (2022) 165477.