DOI QR코드

DOI QR Code

Investigation of the Thermal-to-Electrical Properties of Transition Metal-Sb Alloys Synthesized for Thermoelectric Applications

  • Jong Min Park (Department of 3D Printing Materials, Korea Institute of Materials Science) ;
  • Seungki Jo (Department of 3D Printing Materials, Korea Institute of Materials Science) ;
  • Sooho Jung (Department of 3D Printing Materials, Korea Institute of Materials Science) ;
  • Jinhee Bae (Department of 3D Printing Materials, Korea Institute of Materials Science) ;
  • Linh Ba Vu (Department of 3D Printing Materials, Korea Institute of Materials Science) ;
  • Kwi-Il Park (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Kyung Tae Kim (Department of 3D Printing Materials, Korea Institute of Materials Science)
  • Received : 2024.03.26
  • Accepted : 2024.04.24
  • Published : 2024.06.28

Abstract

The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.

Keywords

Acknowledgement

This work was supported by the principal R&D program of Korea Institute of Materials Science (Code No. PNK9950) and Bridge-Convergence Technology R&D project (Code No. 2021M3C1C309754021) funded by National Research Foundation of Korea, respectively.

References

  1. S. Jung, Y. J. Woo, K. T. Kim, and S. Jo: J. Powder Mater., 30 (2023) 123. 
  2. M. J. Jung, J. Y. Park, S. M. Eun, and B. J .Choi: J. Powder Mater., 30 (2023) 130.  https://doi.org/10.4150/KPMI.2023.30.2.130
  3. D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang, G. Han, J. Tang, D. Zhou, L. Yang, and Z. Chen: Chem. Eng. J., 388 (2020) 124295. 
  4. M. Rull-Bravo, A. Moure, J. F. Fernandez, and M. Martin-Gonzalez: RSC Adv., 5 (2015) 41653. 
  5. T.M. Tritt and M.A. Subramanian: MRS Bull., 31 (2011) 188. 
  6. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen: Energy Environ. Sci., 2 (2009) 466. 
  7. S. Ohno, A. Zevalkink, Y. Takagiwa, S. K. Bux, and G. J. Snyder: J. Mater. Chem. A., 2 (2014) 7478. 
  8. H. Tamaki, H. K. Sato, and T. Kanno: Adv. Mater., 28 (2016) 10182. 
  9. T. Yamada, H. Yamane, and H. Nagai: Adv. Mater., 27 (2015) 4708.
  10. L. Borgsmiller, Q. Li, M. Y. Toriyama, and G. J. Snyder: Adv. Energy Mater., 13 (2023) 2300393. 
  11. X. Zhang, H. Gu, Y. Zhang, L. Guo, J. Yang, S. Luo, X. Lu, K. Chen, H. Chai, G. Wang, X. Zhang, and X. Zhou: Chem. Eng. J., 374 (2019) 589. 
  12. W. Zhang, C. Chen, H. Yao, W. Xue, S. Li, F. Bai, Y. Huang, X. Li, X. Lin, F. Cao, J. Sui, S. Wang, B. Yu, Y. Wang, X. Liu, and Q. Zhang: Chem. Mater., 32 (2022) 6983. 
  13. S. Zheng, K. Peng, S. Xiao, Z. Zhou, X. Lu, G. Han, B. Zhang, G. Wang, and X. Zhou: J. Adv. Ceram., 11 (2022) 1604. 
  14. J. Song, H. Y. Song, Z. Wang, S. Lee, J. Hwang, S. Y. Lee, J. Lee, D. Kim, K. H. Lee, Y. Kim, S. H. Oh, and S. W. Kim: Sci. Adv., 5 (2019) eaax039. 
  15. C. Zheng: J. Solid State Chem., 72 (1988) 58. 
  16. B. I. Yoo, N. Lee, B. Lamichhane, J. Bang, H. Y. Song, B. C. Park, K. H. Lee, S. Kim, and S. W. Kim: Adv. Mater., 34 (2022) 2200074. 
  17. S. Khan, D. F. Khan, R. Neffati, T. Usman, M. W. Ahsraf, S. Khan, S. U. Jan, and G. Murtaza: J. Rare Earths., 42 (2024) 147. 
  18. E. S. Toberer, A. F. May, B. C. Melot, E. Flage-Larsen, and G. J. Snyder: Dalton Trans., 39 (2010) 1046. 
  19. L. Wu, Z. Zhou, G. Han, B. Zhang, J. Yu, H. Wang, Y. Chen, X. Lu, G. Wang, and X. Zhou: Chem. Eng. J., 475 (2023) 145988. 
  20. D. Boa, S. Hassam, G. Kra, K. P. Kotchi, and J. Rogez: Calphad., 32 (2008) 227. 
  21. P. Kainzbauer, K. W. Richter, and H. Ipser: J. Phase Equilib. Diffus., 37 (2016) 459. 
  22. D. An, S. Zhang, X. Zhai, W. Yang, R. Wu, H. Zhang, W. Fan, W. Wang, S. Chen, O. Cojocaru-Miredin, X. Zhang, M. Wuttig, and Yu: Nat. Commun., 15 (2024) 3177. 
  23. X. Zhang, Z. Bu, X. Shi, Z. Chen, S. Lin, B. Shan, M. Wood, A. H. Snyder, L. Chen, G. J. Snyder, and Y. Pei: Sci. Adv., 6 (2020) eabc0726. 
  24. M. T. Ange, P. W. Voorhees, and G. J. Snyder: Adv. Mater., 31 (2019) 1902980. 
  25. J. Zheng and W. Davenport: Phys. Rev. B., 69 (2004) 144415. 
  26. G. Rahman, S. Cho, and S. C. Hong: J. Magn. Magn. Mater., 304 (2006) e146. 
  27. H. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder: APL Mater., 3 (2015) 041506. 
  28. The Materials Project: MnSb (mp-786). (2023) 
  29. The Materials Project: FeSb (mp-2619). (2023)