DOI QR코드

DOI QR Code

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee (Nano-composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Su Hyun Park (Nano-composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Gyungsu Byun (Department of Information and Communication Eng., Inha University) ;
  • Chang-Yeoul Kim (Nano-composite Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2023.10.24
  • Accepted : 2024.04.13
  • Published : 2024.06.28

Abstract

InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

Keywords

Acknowledgement

The authors are appreciated for the financial support by the project of nano-material development of Korean national research foundation (NRF-2021M3H4A6A03103774) and the strategic material development program of Korea Institute of Ceramic Engineering and Technology (KPP21003).

References

  1. A.I. Ekimov and A.A. Onushchenko: JETP Lett., 34 (1981) 345. 
  2. R. Rossetti and L. Brus: J. Phys. Chem., 86 (1982) 4470. 
  3. Y. Won, O. Cho, T. Kim, D.-Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang: Nature., 575 (2019) 638. 
  4. Y. Kim, S. Ham, H. Jang, J. Min, H. Chung, J. Lee, D. Kim, and E. Jang: ACS Appl. Nano Mater., 2 (2019) 1496. 
  5. R. Xie, D. Battaglia, and X. Peng: J. Am. Chem. Soc., 129 (2007) 15432. 
  6. J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann: Adv. Mater., 20 (2008) 4068. 
  7. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim: Adv. Mater., 22 (2010) 3076. 
  8. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss: Chem. Mater., 28 (2016) 2491. 
  9. P. Ramasamy, N. Kim, Y. Kang, O. Ramirez, and J. Lee: Chem. Mater., 29 (2017) 6893. 
  10. Q. Wu, F. Cao, S. Wang, Y. Wang, Z. Sun, J. Feng, Y. Liu, L. Wang, Q. Cao, Y. Li, B. Wei, W. Wong, and X. Yang: Adv. Sci., 9 (2022) 2200959. 
  11. L. Qian, Y. Zheng, J. Xue, and P. Holloway: Nat. Photon., 5 (2011) 543. 
  12. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. C. Sullivan, and P. T. Kazlas: Nat. Photon., 7 (2013) 407. 
  13. Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X Peng: Nature., 515 (2014) 96. 
  14. J. R. Manders, L. Qian, A. Titov, J. Hyvonen, J. T. Scott, K. P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P. H. Holloway: J. Soc. Inf. Disp., 23 (2015) 523-528  https://doi.org/10.1002/jsid.393
  15. J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu: ACS Appl. Mater. Interfaces, 9 (2017) 38755.  https://doi.org/10.1021/acsami.7b10785
  16. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. Mc-Daniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov: Nat. Commun., 4 (2013) 2661. 
  17. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian: Nat. Photon., 9 (2015) 259. 
  18. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian: Nat. Commun., 9 (2018) 2608. 
  19. Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng: J. Am. Chem. Soc., 141 (2019) 6448. 
  20. P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, and S. Tamang: Chem. Rev., 116 (2016) 10731. 
  21. O. I. Micic, K. M. Jones, A. Cahill, and A. J. Nozik: J. Phys. Chem. B., 102 (1998) 9791. 
  22. J. L. Stein, W. M. Holden, A. Venkatesh, M. E. Mundy, A. J. Rossini, G. T. Seidler, and B. M. Cossairt: Chem. Mater., 30 (2018) 6377. 
  23. M. D. Tessier, E. A. Baquero, D. Dupont, V. Grigel, E. Bladt, S. Bals, Y. Coppel, Z. Hens, C. Nayral, and F. Delpech: Chem. Mater., 30 (2018) 6877. 
  24. M. D. Tessier, D. Dupong, K. D, J. D. Roo, and Z Hens: Chem. Mater., 27 (2015) 4893. 
  25. N. Kirkwood, A. De Backer, T. Altantzis, N. Winckelmans, A. Longo, F.V. Antolinez, F. T. Rabouw, L.De Trizio, J. J. Geuchies, J. T. Mulder, N. Renaud, S. Bals, L. Manna, and A. J. Houtepen: Chem. Mater., 32 (2020) 557. 
  26. M. Parvizian, J. Bechter, J. Huber, N. Chettata, and J. De Roo: J. Chem. Educ., 100 (2023) 1613. 
  27. G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney: J. Phys. Chem. C., 118 (2014) 18079.