DOI QR코드

DOI QR Code

Scientific Objectives and Mission Design of Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe (IAMMAP) for a Sounding Rocket in Low-Altitude Ionosphere

저고도 전리권 관측을 위한 사운딩 로켓 실험용 IAMMAP(Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe)의 과학적 목표와 임무 설계

  • Jimin Hong (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Yoon Shin (Perigee Aerospace Inc) ;
  • Sebum Chun (Perigee Aerospace Inc) ;
  • Sangwoo Youk (Perigee Aerospace Inc) ;
  • Jinkyu Kim (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Wonho Cha (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Seongog Park (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Seunguk Lee (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Suhwan Park (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology) ;
  • Jeong-Heon Kim (Korea Astronomy and Space Science Institute) ;
  • Kwangsun Ryu (Satellite Technology Research Center (SaTRec), Korea Advanced Institute of Science and Technology)
  • 홍지민 (한국과학기술원 인공위성연구소) ;
  • 신동윤 (페리지에어로스페이스(주)) ;
  • 천세범 (페리지에어로스페이스(주)) ;
  • 육상우 (페리지에어로스페이스(주)) ;
  • 김진규 (한국과학기술원 인공위성연구소) ;
  • 차원호 (한국과학기술원 인공위성연구소) ;
  • 박성옥 (한국과학기술원 인공위성연구소) ;
  • 이승욱 (한국과학기술원 인공위성연구소) ;
  • 박수환 (한국과학기술원 인공위성연구소) ;
  • 김정헌 (한국천문연구원) ;
  • 유광선 (한국과학기술원 인공위성연구소)
  • Received : 2024.04.13
  • Accepted : 2024.05.03
  • Published : 2024.05.31

Abstract

Sounding rockets are cost-effective and rapidly deployable tools for directly exploring the ionosphere and microgravity environments. These rockets achieve their target altitudes quickly and are equipped with various scientific instruments to collect real-time data. Perigee Aerospace plans its inaugural test launch in the first half of 2024, followed by a second performance test launch in January 2025. The second launch, scheduled off the coast of Jeju Island, aims to reach an altitude of approximately 150 km with a payload of 30 kg, conducting various experiments in the suborbital region. Particularly in mid-latitude regions, the ionosphere sporadically exhibits increased electron densities in the sporadic E layers and magnetic fluctuations caused by the equatorial electrojet. To measure these phenomena, the sounding rocket version of ionospheric anomaly monitoring by magnetometer and plasma-probe (IAMMAP), currently under development at the KAIST Satellite Research Center, will be onboard. This study focuses on enhancing our understanding of the mid-latitude ionosphere and designing observable missions for the forthcoming performance tests.

사운딩 로켓은 저렴한 비용과 빠른 개발 기간을 통해 전리권이나 무중력 환경을 직접 탐사하는 유용한 도구이다. 이러한 로켓은 목표 고도에 신속하게 도달하며, 다양한 과학적 장비를 탑재하여 데이터를 실시간으로 수집할 수 있다. 페리지에어로스페이스(주)는 2024년 상반기에 첫 시험 발사를 진행한 뒤, 2025년 1월경에는 2차 성능시험 사운딩 로켓을 발사할 예정이다. 이 로켓은 제주 해상에서 발사될 예정이며, 약 150 km의 목표 고도에 총 30 kg의 탑재체를 싣고, 준궤도 영역에서 다양한 실험을 수행할 것이다. 특히, 중위도 지역의 전리권에서는 간헐적으로 전자 밀도가 증가하는 스포라딕 E층과 적도 전기제트에 의한 자기장의 미세변화를 관측할 수 있을 것으로 예상된다. 이러한 관측을 위해 KAIST 인공위성연구소에서 개발 중인 탑재체 IAMMAP(ionospheric anomaly monitoring by magnetometer and plasma-probe)의 사운딩 로켓 버전이 발사체에 실릴 예정이다. 본 연구는 중위도 지역의 전리권에 대해서 이해하고, 2차 성능시험에서의 관측 가능한 임무 설계에 중점을 두고자 한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부와 한국연구재단(NRF)의 위성개발사업(NRF-2021-M1A3A4A06086639)과 뉴스페이스 리더 양성 사업(NRF-2021-M1A3C2078744)의 지원을 받아 수행된 연구 결과이며 이에 감사드립니다.

References

  1. Ryu K, Parrot M, Kim SG, Jeong KS, Chae JS, et al., Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008, J. Geophys. Res. Space Phys. 119, 305-323 (2014). https://doi.org/10.1002/2014JA020613
  2. Kim E, Kim KN, Mid- and low-latitude earth ionospheric phenomena and current status of research, J. Space Technol. Appl. 3, 239-256 (2023). https://doi.org/10.52912/jsta.2023.3.3.239
  3. Lee C, Lee WK, Division of solar and space environment of KSSS, ionospheric and upper atmospheric observations in Korea, J. Space Technol. Appl. 1, 199-216 (2021). https://doi.org/10.52912/jsta.2021.1.2.199
  4. Maeda J, Heki K, Two-dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan, Radio Sci. 49, 28-35 (2014). https://doi.org/10.1002/2013RS005295
  5. Chu YH, Wang CY, Wu KH, Chen KT, Tzeng KJ, et al., Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: wind shear theory examination, J. Geophys. Res. Space Physics. 119, 2117-2136 (2014). https://doi.org/10.1002/2013JA019437
  6. Yeh WH, Liu JY, Huang CY, Chen SP, Explanation of the sporadic-E layer formation by comparing FORMOSAT-3/COSMIC data with meteor and wind shear information, J. Geophys. Res. Atmos. 119, 4568-4579 (2014). https://doi.org/10.1002/2013JD020798
  7. Jo E, Kim YH, Moon S, Kwak YS, Seasonal and local time variations of sporadic E layer over South Korea, J. Astron. Space Sci. 36, 61-68 (2019). https://doi.org/10.5140/JASS.2019.36.2.61
  8. Yusupov KM, Bakhmetieva NV, Sporadic E layer with a structure of double cusp in the vertical sounding ionogram, Atmosphere 12, 1093 (2021). https://doi.org/10.3390/atmos12091093
  9. Haldoupis C, Ogawa T, Schlegel K, Koehler JA, Ono T, Is there a plasma density gradient role on the generation of short-scale Farley-Buneman waves? Ann. Geophys. 23, 3323-3337 (2005). https://doi.org/10.5194/angeo-23-3323-2005
  10. Tuo Z, Doumbia V, Coisson P, N'Guessan K, Abdel AK, Variations of the peak positions in the longitudinal profile of noon-time equatorial electrojet, Earth Planets Space. 72, 174 (2020). https://doi.org/10.1186/s40623-020-01305-z
  11. Kikuchi T, Hashimoto KK, Tanaka T, Nishimura Y, Nagatsuma T, Middle latitude geomagnetic disturbances caused by hall and pedersen current circuits driven by prompt penetration electric fields, Atmosphere 13, 580 (2022). https://doi.org/10.3390/atmos13040580
  12. Ryu K, Lee S, Woo CH, Lee J, Jang E, et al., Science objectives and design of ionospheric monitoring instrument ionospheric anomaly monitoring by magnetometer and plasmaprobe (IAMMAP) for the CAS500-3 satellite, J. Astron. Space Sci. 39, 117-126 (2022). https://doi.org/10.5140/JASS.2022.39.3.117
  13. Lee S, Ryu K, Choi D, Park S, Kim J, et al., Design and testing of an adaptive in-phase magnetometer (AIMAG), the equatorial-electrojet-detecting fluxgate magnetometer, for the CAS500-3 Satellite, Remote Sens. 15, 4829 (2023). https://doi.org/10.3390/rs15194829
  14. Langmuir I, Mott-Smith HM, Studies of electric discharges in gases at low pressures, Gen. Electr. Rev. 27, 449-583 (2024).
  15. Reifman A, Dow WG, Dynamic probe measurements in the ionosphere, Phys. Rev. 76, 987-988 (1949). https://doi.org/10.1103/PhysRev.76.987
  16. Ryu K, Lee J, Kim S, Chung T, Shin GH, et al., Characteristics of the plasma source for ground ionosphere simulation surveyed by disk-type langmuir probe, J. Astron. Space Sci. 34, 343-351 (2017). https://doi.org/10.5140/JASS.2017.34.4.343
  17. Oyama K, DC langmuir probe for measurement of space plasma: a brief review, J. Astron. Space Sci. 32, 167-180 (2015). https://doi.org/10.5140/jass.2015.32.3.167
  18. Fang HK, Chen WH, Chen AB, Oyama K, The effect of surface contamination of tiny satellite on DC probe ionosphere measurement, AIP Adv. 8, 105220 (2018). https://doi.org/10.1063/1.5052489
  19. Ryu K, Lee S, Woo CH, Design and validation of impedance probe for platform-independent ionospheric plasma diagnostics, Curr. App. Phys. 51, 71-79 (2023). https://doi.org/10.1016/j.cap.2023.05.003
  20. Aschenbrenner, H. A. N. S. (1936). Eine Anordnung zur Regisrierung rauscher magnetischer Storungen. Hochfrequenztechnik und Elektoakustik, 47(6), 177-181.
  21. Dolginov SS, Zhuzgov LN, Selyutin VA, Magnetometers in the third Soviet earth satellite, Am. Rocket Soc. 31, 1329 (1961).
  22. Nishio Y, Tohyama F, Onishi N, The sensor temperature characteristics of a fluxgate magnetometer by a wide-range temperature test for a Mercury exploration satellite, Meas. Sci. Technol. 18, 2721-2730 (2007). https://doi.org/10.1088/0957-0233/18/8/050