DOI QR코드

DOI QR Code

Technology Trends in CubeSat-Based Space Laser Communication

큐브위성 기반 우주 레이저 통신 기술 동향

  • Chanil Yeo (Electronics and Telecommunications Research Institute) ;
  • Young Soon Heo (Electronics and Telecommunications Research Institute) ;
  • Siwoong Park (Electronics and Telecommunications Research Institute) ;
  • Hyoung Jun Park (Electronics and Telecommunications Research Institute)
  • Received : 2024.04.26
  • Accepted : 2024.05.09
  • Published : 2024.05.31

Abstract

CubeSats are being utilized in various fields such as Earth observation, space exploration, and verification of space science and technology due to their low cost, short development period, enhanced mission-oriented performance, and ability to perform various missions through constellation and formation flights. Recently, as the availability of CubeSats has increased and their application areas have expanded, the demand for high-speed transmission of large amounts of data obtained by CubeSats has increased unprecedentedly. Laser-based free space optical communication technology is capable of transmitting large amounts of data at high speeds compared to the existing radio communication methods, and provides various advantages such as use of unlicensed spectrum, low cost, low power, high security characteristics, and of use a small communication platform. For this reason, it is suitable as a high-performance communication technology to support CubeSat missions. In this paper, we will present the core components and characteristics of CubeSat-based space laser communication system, and recent research trends, as well as representative technology development results.

큐브위성은 저비용, 짧은 개발 기간, 임무 지향적 성능 고도화, 군집 및 편대 비행을 통한 다양한 임무 수행이 가능하여 지구관측, 우주탐사, 우주 과학기술 검증 등 다양한 분야에서 활용성이 높다. 최근 큐브위성의 활용성이 높아지고 응용 분야가 확대됨에 따라 대용량 데이터의 고속 전송에 대한 요구가 전례 없이 증가하고 있는 추세이다. 레이저 기반 자유공간 광통신 기술은 기존 전파통신 방식 대비 고속으로 대용량 데이터 전송이 가능하고, 비면허대역 스펙트럼 사용, 저비용, 저전력, 높은 보안 특성 및 소형 통신 플랫폼의 활용 가능성 등 다양한 장점이 있어 큐브위성 임무 지원을 위한 고성능 통신 수단으로 적합하다. 본 논문에서는 큐브위성 기반 우주 레이저 통신 핵심 구성요소 및 특징을 살펴보고, 최근 연구동향, 대표 기술개발 사례 그리고 실증 결과와 함께 향후 개발 계획 등에 대해 살펴보고자 한다.

Keywords

Acknowledgement

본 연구는 한국전자통신연구원 연구운영지원사업의 일환으로 수행되었습니다(24ZK1110, 호남권 지역산업 기반 ICT 융합기술 고도화 지원사업).

References

  1. Sweeting MN, Modern small satellites-changing the economics of space, Proc. IEEE, 106, 343-361 (2018). https://doi.org/10.1109/JPROC.2018.2806218 
  2. Poghosyan A, Golkar A, CubeSat evolution: analyzing CubeSat capabilities for conducting science missions, Prog. Aerosp. Sci. 88, 59-83 (2017). https://doi.org/10.1016/j.paerosci.2016.11.002 
  3. Saeed N, Elzanaty A, Almorad H, Dahrou H, Al-Naffouri TY, et al., CubeSat communications: recent advances and future challenges, IEEE Commun. Surv. Tutor. 22, 1839-1862 (2020). https://doi.org/10.1109/COMST.2020.2990499 
  4. Lee J, Sohn J, Park J, Yang TY, Song HS, et al., SNIPE mission for space weather research, J. Space Technol. Appl. 2, 104-120 (2022). https://doi.org/10.52912/jsta.2022.2.2.104 
  5. Kobayashi MM, Stocklin F, Pugh M, Kuperman I, Bell D, et al., NASA's high-rate Ka-band downlink system for the NISAR mission, Acta Astronaut. 159, 358-361 (2019). https://doi.org/10.1016/j.actaastro.2019.03.069 
  6. Schieler CM, Riesing KM, Bilyen BC, Robinson BS, Wang JP, TBIRD 200-Gbps CubeSat downlink: system architecture and mission plan, in IEEE International Conference on Space Optical Systems and Applications, Kyoto, Japan, 29-31 Mar 2022. 
  7. Riesing K, Schieler C, Bilyeu B, Chang J, Garga A, et al., Operations and results from the 200 Gbps TBIRD Laser communication Mission, in 37th Annual Small Satellite Conference, Logan, UT, 1-8 Aug 2023. 
  8. Heine F, Tercero AS, Pimentel PA, Hopcke N, Hasler D, et al., In orbit perfomance of tesat LCTs, in SPIE LASE, San Francisco, CA, 1-8 Mar 2019. 
  9. Park S, Yeo CI, Heo YS, Ryu JH, Kang HS, et al., Tracking efficiency improvement according to incident beam size in QPD-based PAT system for common path-based full-duplex FSO terminals, Sensors 22, 7770 (2022). https://doi.org/10.3390/s22207770 
  10. Schieler CM, Riesing KM, Bilyeu MC, Chang JS, Garg AS, et al., On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat, in SPIE LASE, San Francisco, CA, 1-9 Mar 2023. 
  11. Casado AC, Do PX, Kolev D, Hosonuma T, Shiratama K, et al., Intersatellite-link demonstration mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO satellite), in IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, OR, 1-5 Oct 2019. 
  12. Mathason B, Albert MM, Engin D, Cao H, Petrillo KG, et al., CubeSat lasercom optical terminals for near-Earth to deep space communications, in SPIE LASE, San Francisco, CA, 1-6 Mar 2019. 
  13. Li R, Lin B, Liu Y, Dong M, Zhao S, A survey on laser space network: terminals, links, and architectures, IEEE Access 10, 34815-34834 (2022). https://doi.org/10.1109/ACCESS.2022.3162917 
  14. Rose, T, Rowen D, LaLumondiere S, Werner N, Faler A, et al., Optical communications downlink from a 1.5U Cubesat: OCSD program, in International Conference on Space Optics (ICSO), Chania, Greece, 1-12 Oct 2018. 
  15. Cierny O, Serra P, Kammerer W, Grenfell P, Gunnison G, et al., Testing of the CubeSat laser infrared crosslink (CLICK-A) Payload, in 34th Annual Small Satellite Conference, Logan, UT, 1-23 Aug 2020. 
  16. Velazco JE, Vega JS, Q4: a CubeSat mission to demonstrate omnidirectional optical communications, in 2020 IEEE Aerospace Conference, Big Sky, MT, 1-6 Aug 2020. 
  17. Pimentel PM, Rodiger B, Schmidt C, Fuchs C, Rochow C, et al., Cube laser communication terminal (CubeLCT) state of the art, Acta Astronaut. 211, 326-332 (2023). https://doi.org/10.1016/j.actaastro.2023.06.026 
  18. Schmidt C, Rodiger B, Rosano J, Papadopoulos C, Hahn MT, et al., DLR's optical communication terminals for CubeSats, in 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto, Japan, 29-31 Mar 2022. 
  19. Eoporta, PIXL-1 / Formerly CubeL or OSIRIS4CubeSat (2021) [Internet], viewed 2024 Mar 10, available from https://www.eoportal.org/satellite-missions/pixl-1 
  20. Rodiger B, Menninger C, Fuchs C, Grillmayer L, Arnold S, et al., High data-rate optical communication payload for CubeSats, in SPIE Optical Engineering + Applications, online conference, 22 Aug 2020. 
  21. DLR, A pioneering launch - compact satellite PIXL-1 carries the world's smallest laser terminal into orbit (2021) [Internet], viewed 2024 Mar 10, available from https://www.dlr.de/en/latest/news/2021/01/20210124_pioneering-launch-compact-satellite-with-smallest-laser-terminal 
  22. Nonay JR, Ruddenklau R, Sinn A, Jakobs JP, Berlitz J, et al., Horizontal free-space optical link with CubeISL over 143 km, J. Opt. Commun. Netw. 16, 593-601 (2024). https://doi.org/10.1364/JOCN.518271 
  23. NASA, CubeSat set to demonstrate NASA's fastest laser link from space [Internet], viewed 2024 Mar 25, available from https://www.nasa.gov/directorates/somd/cubesat-set-to-demonstrate-nasas-fastest-laser-link-from-space/ 
  24. Schieler CM, Riesing KM, Horvath AJ, Bilyeu BC, Chang JS, et al., 200 Gbps TBIRD CubeSat Downlink: pre-flight test results, in SPIE LASE, San Francisco, CA, 1-7 Mar 2022.