과제정보
This study was supported by the Challengeable Future Defense Technology Research and Development Program (Grant No. 912908601) of the Agency for Defense Development (2023).
참고문헌
- Chen B, Cao J, Parra A, Chin TJ, Satellite pose estimation with deep landmark regression and nonlinear pose refinement, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27-28 Oct 2019.
- Choi AJ, Yang HH, Han JH, Study on robust aerial docking mechanism with deep learning based drogue detection and docking, Mech. Syst. Signal Process. 154, 107579 (2021). https://doi.org/10.1016/j.ymssp.2020.107579
- Eun Y, Park SY, Kim GN, Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity, Acta Astronaut. 147, 48-58 (2018). https://doi.org/10.1016/j.actaastro.2018.03.030
- Garcia A, Musallam MA, Gaudilliere V, Ghorbel E, Ismaeil KA, et al., LSPnet: a 2D localization-oriented spacecraft pose estimation neural network, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Nashville, TN, 19-25 Jun 2021.
- Hyun J, Eun Y, Park SY, Experimental study of spacecraft pose estimation algorithm using vision-based sensor, J. Astron. Space Sci. 35, 263-277 (2018). https://doi.org/10.5140/JASS.2018.35.4.263
- Kim GN, Park SY, Kang DE, Son J, Lee T, et al., Development of CubeSats for CANYVAL-C mission in formation flying, in APISAT 2019: asia pacific international symposium on aerospace technology, (Engineers Australia, Gold Coast, Australia, 2019) 813-824.
- Kingma DP, Ba J, Adam: a method for stochastic optimization, Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, 7-9 May 2015.
- Kisantal M, Sharma S, Park TH, Izzo D, Martens M, et al., Satellite pose estimation challenge: dataset, competition design, and results, IEEE Trans. Aerosp. Electron. Syst. 56, 4083-4098 (2020). https://doi.org/10.1109/TAES.2020.2989063
- Mayfield M, Industry offering on-orbit satellite servicing, Natl Def. 105, 25-26 (2021).
- Moon S, Design and verification of spacecraft pose estimation algorithm using deep learning, Master Thesis, Yonsei University (2022).
- Nazare TS, Paranhos da Costa GB, Contato WA, Ponti M, Deep convolutional neural networks and noisy images, in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 22nd Iberoamerican Congress, CIARP 2017, Valparaiso, Chile, 7-10 Nov 2017.
- Opromolla R, Fasano G, Rufino G, Grassi M, Uncooperative pose estimation with a LIDAR-based system, Acta Astronaut. 110, 287-297 (2015). https://doi.org/10.1016/j.actaastro.2014.11.003
- Phisannupawong T, Kamsing P, Torteeka P, Channumsin S, Sawangwit U, et al., Vision-based spacecraft pose estimation via a deep convolutional neural network for noncooperative docking operations, Aerospace 7, 126 (2020). https://doi.org/10.3390/aerospace7090126
- Proenca PF, Gao Y, Deep learning for spacecraft pose estimation from photorealistic rendering, in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May-31 Aug 2020.
- Sanders A, An Introduction to Unreal Engine 4 (1st ed.) (A K Peters, New York, 2016).
- Sharma S, D'Amico S, Pose estimation for non-cooperative rendezvous using neural networks, in AIAA/AAS Space Flight Mechanics Meeting, Maui, HI, 13-17 Jan 2019.
- Sun K, Xiao B, Liu D, Wang J, Deep high-resolution representation learning for human pose estimation, Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 15-20 Jun 2019.
- Zhang Z, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330-1334 (2000). https://doi.org/10.1109/34.888718