DOI QR코드

DOI QR Code

Finite element analysis of shallow buried tunnel subjected to traffic loading by damage mechanics theory

  • Mohammadreza Tameh (Department of Civil and Environmental Engineering, University of Kashan)
  • Received : 2023.04.05
  • Accepted : 2024.06.28
  • Published : 2024.07.10

Abstract

Tunnels offer myriad benefits for modern countries, and understanding their behavior under loads is critical. This paper analyzes and evaluates the damage to buried horseshoe tunnels under soil pressure and traffic loading. To achieve this, a numerical model of this type of tunnel is first created using ABAQUS software. Then, fracture mechanics theory is applied to investigate the fracture and damage of the horseshoe tunnel. The numerical analysis is based on the damage plasticity model of concrete, which describes the inelastic behavior of concrete in tension and compression. In addition, the reinforcing steel is modeled using the bilinear plasticity model. Damage contours, stress contours, and maximum displacements illustrate how and where traffic loading alters the response of the horseshoe tunnel. Based on the results, the fracture mechanism proceeded as follows: initially, damage started at the center of the tunnel bottom, followed by the formation of damage and micro-cracks at the corners of the tunnel. Eventually, the damage reached the top of the concrete arch with increasing loading. Therefore, in the design of this tunnel, these critical areas should be reinforced more to prevent cracking.

Keywords

References

  1. Abdollahipour, A., Marji, M.F., Bafghi, A.Y. and Gholamnejad, J. (2016), "Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method", Int. J. Fract., 199, 71-87. https://doi.org/10.1007/s10704-016-0095-9.
  2. Acun, B. (2012), Eurocode 8: Seismic design of buildings, worked examples, Publications Office of the European Union. 
  3. Bassan, S. (2015), "Sight distance and horizontal curve aspects in the design of road tunnels vs. highways", Tunn. Undergr. Sp. Tech., 45, 214-226. https://doi.org/10.1016/j.tust.2014.10.004.
  4. Bendjebbas, H., Abdellah-ElHadj, A. and Abbas, M. (2016), "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review", Renew. Sust. Energ. Rev., 54, 452-472. https://doi.org/10.1016/j.rser.2015.10.031.
  5. Birtel, V. and Mark, P. (2006), Parameterised finite element modelling of RC beam shear failure. ABAQUS users' conference.
  6. Bryden, P., El Naggar, H. and Valsangkar, A. (2015), "Soil-structure interaction of very flexible pipes: centrifuge and numerical investigations", Int. J. Geomech., 15(6), 04014091. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000442.
  7. Chen, G.H., Zou, J.F. and Qian, Z.H. (2019), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097.
  8. Cui, X., Li, S., Lou, J., Wang, Z., Zhang, J., Tang, W. and Gao, Z. (2015), "Dynamic responses and damage analyses of tunnel lining and errant large vehicle during collision", Tunn. Undergr. Sp. Tech., 50, 1-12. https://doi.org/10.1016/j.tust.2015.05.011.
  9. Falcone, G., Romagnoli, G., Naso, G., Mori, F., Peronace, E. and Moscatelli, M. (2020), "Effect of bedrock stiffness and thickness on numerical simulation of seismic site response. Italian case studies", Soil Dyn. Earthq. Eng., 139, 106361. https://doi.org/10.1016/j.soildyn.2020.106361.
  10. Haack, A. (2003), Tunnelling in Germany: Statistics (2002/2003), Analysis and Outlook. TUNNEL-GUTERSLOH-(8), 14-25.
  11. Haeri, H., Sarfarazi, V., Ebneabbasi, P., Shahbazian, A., Marji, M. F. and Mohamadi, A. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
  12. Hashash, Y.M., Hook, J.J., Schmidt, B., John, I. and Yao, C. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
  13. Huang, X., Zhou, Z. and Yang, X. (2018), "Roof failure of shallow tunnel based on simplified stochastic medium theory", Geomech. Eng., 14(6), 571-580. https://doi.org/10.12989/gae.2018.14.6.571.
  14. Hult, J. (1974), Creep in continua and structures. Topics in Applied Continuum Mechanics: Symposium Vienna, March 1-2, 1974,
  15. Jiang, M. and Yin, Z.Y. (2012), "Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method", Tunn. Undergr. Sp. Tech., 32, 251-259. https://doi.org/10.1016/j.tust.2012.06.001.
  16. Kachanov, L. (1986), Introduction to continuum damage mechanics (Vol. 10), Springer Science & Business Media.
  17. Kattan, P.I. and Voyiadjis, G.Z. (1990), "A coupled theory of damage mechanics and finite strain elasto-plasticity-I. Damage and elastic deformations", Int. J. Eng. Sci., 28(5), 421-435. https://doi.org/10.1016/0020-7225(90)90007-6.
  18. Kraus, E., Oh, J. and Fernando, E.G. (2014), "Impact of repeat overweight truck traffic on buried utility facilities", J. Perform. Constr. Fac., 28(4), 04014004. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000454.
  19. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  20. LEMAITRE, J. (1971), Evaluation of dissipation and damage in metals submitted to dynamic loading(Constitutive equations for defining dissipation and damage in metals submitted to dynamic loading).
  21. Lemaitre, J. (1984), "How to use damage mechanics", Nuclear Eng. Design, 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9.
  22. Lemaitre, J. (1986), "Local approach of fracture", Eng. Fract. Mech., 25(5-6), 523-537. https://doi.org/10.1016/0013-7944(86)90021-4.
  23. Lemaitre, J. and Chaboche, J. (1975), "A non-linear model of creep-fatigue damage cumulation and interaction(for hot metallic structures)", Mechanics of visco-elastic media and bodies.
  24. Lemaitre, J. and Dufailly, J. (1987), "Damage measurements", Eng. Fract. Mech., 28(5-6), 643-661.
  25. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  26. Nikadat, N., Fatehi, M. and Abdollahipour, A. (2015), "Numerical modelling of stress analysis around rectangular tunnels with large discontinuities (fault) by a hybridized indirect BEM", J. Central South Univ., 22, 4291-4299.
  27. Nikadat, N. and Marji, M.F. (2016), "Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters", Geomech. Eng, 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269.
  28. Pilkey, W.D. and Pilkey, W.D. (2005), Formulas for stress, strain, and structural matrices (Vol. 107). John Wiley & Sons Hoboken, NJ, USA.
  29. Schwer, L. (2014),"Modeling rebar: The forgotten sister in reinforced concrete modeling", Proceedings of the 13th International LS-DYNA® Users Conference, https://petergrassl.com/tempFiles/sch14.pdf.
  30. Singh, M., Viladkar, M.N. and Samadhiya, N.K. (2017), "Seismic analysis of Delhi metro underground tunnels", Indian Geotech. J., 47, 67-83. https://doi.org/10.1007/s40098-016-0203-9.
  31. Struik, L.C.E. (1978), Physical aging in amorphous polymers and other materials (Vol. 106). Citeseer. http://resolver.tudelft.nl/uuid:941d2af6-903a-4260-9953-2efb4cb38d2e
  32. Systemes, D. (2011), "Abaqus Analysis User's Manual, Vol. 3: Materials, Version 6.11. Dassault Systemes Simulia Corp., Providence, RI, USA.
  33. Trickey, S.A. and Moore, I.D. (2007), "Three-dimensional response of buried pipes under circular surface loading", J. Geotech. Geoenviron. Eng., 133(2), 219-223. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(219).
  34. Voyiadjis, G.Z. and Kattan, P.I. (1990), "A coupled theory of damage mechanics and finite strain elasto-plasticity-II. Damage and finite strain plasticity", Int. J. Eng. Sci., 28(6), 505-524.
  35. Voyiadjis, G.Z. and Kattan, P.I. (2005), Damage mechanics. CRC Press. https://doi.org/10.1016/0020-7225(90)90053-L.
  36. Wahalathantri, B., Thambiratnam, D., Chan, T. and Fawzia, S. (2011), "A material model for flexural crack simulation in reinforced concrete elements using ABAQUS", Proceedings of the 1st international conference on engineering, designing and developing the built environment for sustainable wellbeing, https://eprints.qut.edu.au/41712/1/eddBE2011_260_264_Wahalathantri.pdf.
  37. Wang, G., Lu, W., Yang, G., Yan, P., Chen, M., Zhao, X. and Li, Q. (2020), "A state-of-the-art review on blast resistance and protection of high dams to blast loads", Int. J. Impact Eng., 139, 103529.
  38. Wang, X., Wang, M., Chen, J., Yan, T., Bao, Y., Chen, J., Qin, P., Li, K., Deng, T. and Yan, G. (2020), "Analysis of calculation of fresh-air demand for road tunnel ventilation design in China", Tunn. Undergr. Sp. Tech., 103, 103469. https://doi.org/10.1016/j.ijimpeng.2020.103529.
  39. Wang, X. and Zhao, Y. (2006), "Comment on construction of railway tunnels in China by statistical data", Mod. Tunn. Technol, 21, 7-17. https://doi.org/10.1016/j.tust.2020.103469.
  40. Yang, X., Xu, J., Li, Y. and Yan, R. (2016), "Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule", Geomech. Eng., 10(1), 21-35. https://doi.org/10.12989/gae.2016.10.1.021.
  41. Yoo, C.S., Chung, S.W., Lee, K.M. and Kim, J.S. (1999), "Interaction between flexible buried pipe and surface load", J. Korean Geotech. Soc., 15(3), 83-97. https://www.koreascience.or.kr/article/JAKO199911921749210.pdf. https://doi.org/10.pdf
  42. Yoo, C. (2016), "Effect of spatial characteristics of a weak zone on tunnel deformation behavior", Geomech. Eng., 11(1), 41-58. https://doi.org/10.12989/gae.2016.11.1.041.
  43. Yu, H., Yuan, Y. and Bobet, A. (2017), "Seismic analysis of long tunnels: A review of simplified and unified methods", Undergr. Sp., 2(2), 73-87. https://doi.org/10.1016/j.undsp.2017.05.003.
  44. Zaid, M. (2021), "Three-dimensional finite element analysis of urban rock tunnel under static loading condition: effect of the rock weathering", Geomech. Eng., 25(2), 99-109. https://doi.org/10.12989/gae.2021.25.2.099.
  45. Zhao, Y. and Li, P. (2018), "A statistical analysis of China's traffic tunnel development data", https://doi.org/10.1016/j.eng.2017.12.011.