과제정보
This study is supported by the National Natural Science Foundation of China (Grant No. 52108460)
참고문헌
- Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S. and Manousaridis, I.M. (1998), "Short-term forecasting of wind speed and related electrical power", Solar Energy. 63(1), 61-68. https://doi.org/10.1016/S0038-092X(98)00032-2
- Chen, J., Zeng, G.Q., Zhou, W., Du, W. and Lu, K.D. (2018), "Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization", Energy Conversion Manage., 165, 681-695. https://doi.org/10.1016/j.enconman.2018.03.098
- Chen, M.R., Zeng, G.Q., Lu, K.D. and Weng, J. (2019), "A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM", IEEE Internet Things J., 6(4), 6997-7010. https://doi.org/10.1109/JIOT.2019.2913176
- da Silva, A.F.G., de Andrade, C.R. and Zaparoli, E.L. (2021), "Wind power generation prediction in a complex site by comparing different numerical tools", J Wind Eng Ind Aerod. 216, 104728.
- De Giorgi, M.G., Campilongo, S., Ficarella, A. and Congedo, P.M. (2014), "Comparison between wind power prediction models based on wavelet decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)", Energies, 7(8), 5251-5272. https://doi.org/10.3390/en7085251
- Diebold, F.X. (1994), "Comparing predictive accuracy (Reprinted)", J. Business Economic Statistics, 20(169), 134-144. https://doi.org/10.1198/073500102753410444
- Djurovic, I. and Stankovic, L. (1999), "A virtual instrument for time-frequency analysis", Ieee Transact. Instrumentation Measure., 48(6), 1086-1092. https://doi.org/10.1109/19.816118
- Djurovic, I., Sejdic, E. and Jiang, J. (2008), "Frequency-based window width optimization for S-transform", Aeu-Int. J. Electronics Commun., 62(4), 245-250. https://doi.org/10.1016/j.aeue.2007.03.014
- Fan, S., Xiao, N. and Dong, S. (2020), "A novel model to predict significant wave height based on long short-term memory network", Ocean Eng., 205, 107298.
- Heidari, A.A. and Pahlavani, P. (2017), "An efficient modified grey wolf optimizer with Levy flight for optimization tasks", Appl. Soft Comput., 60, 115-134. https://doi.org/10.1016/j.asoc.2017.06.044
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hong, H.P. (2021), "Response and first passage probability of linear elastic SDOF systems subjected to nonstationary stochastic excitation modelled through S-transform", Struct. Safety. 88, 102007.
- Hong, H.P. and Cui, X.Z. (2023), "Use of transform pairs to represent and simulate nonstationary non-Gaussian process with applications", Struct. Safety. 100, 102267.
- Hu, W., Cheng, B., Yang, Q., Liu, Z., Yuan, Z., Li, K. and Zhang, M. (2023), "A novel two-layer hybrid model for ultra-short-term wind speed prediction based on SSP and BO-LSTM", Wind Struct., 36(5), 293-305.
- Hu, Y.L. and Chen, L. (2018), "A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm", Energy Conversion Manage., 173, 123-142. https://doi.org/10.1016/j.enconman.2018.07.070
- Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: Theory and applications", Neurocomputing. 70(1-3), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 454(1971), 903-995.
- Li, B., Zhang, P.L., Liu, D.S., Mi, S.S., Ren, G.Q. and Tian, H. (2011), "Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization", J. Sound Vib., 330(10), 2388-2399. https://doi.org/10.1016/j.jsv.2010.11.019
- Li, C., Luo, K. and Cao, L. (2022), "Data-driven simulation of multivariate nonstationary wind velocity with explicit introduction of the time-varying coherence functions", J. Wind Eng. Ind. Aerod., 220, 104872.
- Lim, J.Y., Kim, S., Kim, H.K. and Kim, Y.K. (2022), "Long short-term memory (LSTM)-based wind speed prediction during a typhoon for bridge traffic control", J. Wind Eng Ind. Aerod., 220, 104788.
- Ling, Y., Ti, Z., You, H. and Li, Y. (2023), "A proof-of-concept study of estimating wind speed from acoustic frequency-domain signal using machine learning", Wind Struct., 36(5), 345-354.
- Liu, H., Tian, H.Q. and Li, Y.F. (2015), "Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms", Energy Conversion Manage., 100, 16-22. https://doi.org/10.1016/j.enconman.2015.04.057
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
- Nadimi-Shahraki, M.H., Taghian, S. and Mirjalili, S. (2021), "An improved grey wolf optimizer for solving engineering problems", Expert Syst. Appl., 166, 113917.
- Pinnegar, C.R. and Mansinha, L. (2003), "The S-transform with windows of arbitrary and varying shape", Geophysics. 68(1), 381-385. https://doi.org/10.1190/1.1543223
- Shen, L., Mi, L., Han, Y., Cai, C., Li, K. and Wang, L. (2023), "A multi-step wind speed prediction method based on WRF simulation, an optimized data-generating model, and an error correction strategy", Wind Struct., 36(5), 333-344.
- Stankovic, L. (1994), "An analysis of some time-frequency and time-scale distributions", Annales Des Telecommunications. 49(9), 505-517. https://doi.org/10.1007/BF02999442
- Stankovic, L. (1997), "Highly concentrated time-frequency distributions: Pseudo quantum signal representation", Ieee Transact. Signal Processing. 45(3), 543-551. https://doi.org/10.1109/78.558467
- Stankovic, L. (2001), "A measure of some time-frequency distributions concentration", Signal Processing. 81(3), 621-631. https://doi.org/10.1016/S0165-1684(00)00236-X
- Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996), "Localization of the complex spectrum: The S transform", Ieee Transact. Signal Processing. 44(4), 998-1001. https://doi.org/10.1109/78.492555
- Sun, W. and Liu, M. (2016), "Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China", Energy Conversion Manage., 114, 197-208. https://doi.org/10.1016/j.enconman.2016.02.022
- Tang, Q., Qiu, W. and Zhou, Y. (2020), "Classification of complex power quality disturbances using optimized S-transform and Kernel SVM", Ieee Transact. Ind. Electronics. 67(11), 9715-9723. https://doi.org/10.1109/TIE.2019.2952823
- Tu, Q., Chen, X. and Liu, X. (2019), "Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection", Ieee Access. 7, 78012-78028. https://doi.org/10.1109/ACCESS.2019.2921793
- Wang, D., Wang, J., Liu, Y. and Xu, Z. (2015). "An adaptive time-frequency filtering algorithm for multi-component LFM signals based on generalized S-transform", 21st International Conference on Automation and Computing (ICAC), Univ Strathclyde Glasgow, Glasgow, ENGLAND, Sep 11-12.
- Wang, L., McCullough, M. and Kareem, A. (2013), "A data-driven approach for simulation of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerod., 123, 171-190. https://doi.org/10.1016/j.jweia.2013.08.010
- Wang, L., McCullough, M. and Kareem, A. (2014), "Modeling and Simulation of Nonstationary Processes Utilizing Wavelet and Hilbert Transforms", J. Eng. Mech., 140(2), 345-360. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000666
- Wang, S., Zhang, N., Wu, L. and Wang, Y. (2016), "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method", Renew. Energy. 94, 629-636. https://doi.org/10.1016/j.renene.2016.03.103
- Wen, Y.K. and Gu, P. (2004), "Description and simulation of nonstationary processes based on Hilbert spectra", J. Eng. Mech., 130(8), 942-951. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(942)
- Xu, W., Liu, P., Cheng, L., Zhou, Y., Xia, Q., Gong, Y. and Liu, Y. (2021), "Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy", Renew. Energy. 163, 772-782. https://doi.org/10.1016/j.renene.2020.09.032
- Yang, T.H. and Tsai, C.C. (2019), "Using numerical weather model outputs to forecast wind gusts during typhoons", J. Wind Eng. Ind. Aerod., 188, 247-259. https://doi.org/10.1016/j.jweia.2019.03.003
- Zhang, C., Zhou, J., Li, C., Fu, W. and Peng, T. (2017), "A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting", Energy Conversion Manage., 143, 360-376. https://doi.org/10.1016/j.enconman.2017.04.007