DOI QR코드

DOI QR Code

Antibacterial activity of Chamaecyparis obtuse extract and Profile of Antimicrobial Agents Resistance for Metallo-β-lactamase-Producing Pseudomonas aeruginosa

  • Jonghwa Yum (Department of Clinical Laboratory Science, Dongeui University)
  • 투고 : 2024.05.08
  • 심사 : 2024.05.31
  • 발행 : 2024.06.30

초록

In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for clinical metallo-β-lactamase-Producing Pseudomonas aeruginosa (MBLPA.) was compared to commonly used conventional antimicrobial agents. All MBLPA was susceptible to colistin or amikacin, but also to imipenem 88.6%, meropenem 100%, piperacillin 85.7%, ceftazidime 97.1%, gentamicin 97.1%, and ciprofloxacin 100% were non-susceptible. MIC range to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 1 - >128 ㎍/mL, 4 - >128 ㎍/mL, 4 - >128 ㎍/mL, 8 - >128 ㎍/mL, 4 - >128, and 2- >128 ㎍/mL. MIC range to aztreonam for MBLPA were 1 - 128 ㎍/mL. MIC90 to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 32 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, and 128 ㎍/mL. MIC90 to colistin and amikacin were each 1 ㎍/mL and 64 ㎍/mL. The hot water extracts of C. obtuse leaf had the lowest MIC range (0.25 - >0.5 μL/mL), MIC50 (>0.5 μL/mL), and MIC90 (>0.5 μL/mL) of the clinical MBLPA tested, and it was possible more potent than various conventional antimicrobial agents for MBLPA infection patients. Therefore, it suggested the possibility of using extract components of C. obtuse or their derivatives to treat MBLPA infection patients.

키워드

과제정보

I thank Professor Kyungwon Lee of Yonsei University College of Medicine for his help with strain collection.

참고문헌

  1. Andrade SS, Jones RN, Gales AC, Sader HS. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J Antimicrob Chemother. 2003. 52: 140-141. https://doi.org/10.1093/jac/dkg270
  2. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Tests; approved standards M2-M11, 28th ed. Wayne PA: CLSI; 2018.
  3. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd ERM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist. 2019. 12: 2125-2133. https://doi.org/10.2147/IDR.S198373
  4. Hong SB. In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa. Korean J Clin Lab Sci. 2006. 38: 166-172.
  5. Jones RN, Kirby JT, Beach ML, Biedenbach DJ, Pfaller MA. Geographic variations in activity of broad-spectrum β-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimcrobial Surveillance Program (1997-2000). Diagn Microbiol Infect Dis. 2002. 43: 239-243. https://doi.org/10.1016/S0732-8893(02)00390-5
  6. Lee JH, Lee BK, Kim JH, Lee SH, Hong SK. Comparison of Chemical Compositions and Antimicrobial Activities of Essential Oils from Three Conifer Trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtuse. J Microiol Biotechnol. 2009. 19: 391-396. https://doi.org/10.4014/jmb.0803.191
  7. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge test and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001. 7: 88-91. https://doi.org/10.1046/j.1469-0691.2001.00204.x
  8. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the imipenem-EDTA double disk synergy test for differentiating metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003. 41: 4623-4629. https://doi.org/10.1128/JCM.41.10.4623-4629.2003
  9. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009. 22: 582-610. https://doi.org/10.1128/CMR.00040-09
  10. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015. 45: 568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001
  11. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-betalactamases: the quiet before the storm? Clin Microbiol Rev. 2005. 18: 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
  12. Yang JK, Choi MS, Seo WT, Rinker DL, Han SW, Cheong G-W. Chemical composition and antimicrobial activity of Chamaecyparis obtuse leaf essential oil. Fitoterapia. 2007. 78: 149-152. https://doi.org/10.1016/j.fitote.2006.09.026