DOI QR코드

DOI QR Code

Serum branch chain amino acids and aromatic amino acids ratio and metabolic risks in Koreans with normal-weight or obesity: a cross-sectional study

  • Ji-Sook Park (Department of Food and Nutrition, Changwon National University) ;
  • Kainat Ahmed (Interdisciplinary Program in Senior Human Ecology, Changwon National University) ;
  • Jung-Eun Yim (Department of Food and Nutrition, Changwon National University)
  • 투고 : 2024.03.06
  • 심사 : 2024.04.26
  • 발행 : 2024.06.30

초록

Objectives: Metabolic disease is strongly associated with future insulin resistance, and its prevalence is increasing worldwide. Thus, identifying early biomarkers of metabolic-related disease based on serum profiling is useful to control future metabolic disease. Our study aimed to assess the association of serum branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) ratio and metabolic disease according to body mass index (BMI) status among Korean adults. Methods: This cross-sectional study included 78 adults aged 20-59 years in Korea. We compared serum amino acid (AA) levels between adults with normal-weight and adults with obesity and investigated biomarkers of metabolic disease. We examined serum AA levels, blood profile, and body composition. We also evaluated the association between serum AAs and metabolic-related disease. Results: The height, weight, BMI, waist circumference, hip circumference, waist-hip-ratio, body fat mass, body fat percent, skeletal muscle mass, systolic blood pressure, and diastolic blood pressure were higher in the group with obesity compared to normal weight group. The group with obesity showed significantly higher levels of BCAA, AAA, and BCAA and AAA ratio. Further, BCAA and AAA ratio were significantly positively correlated with triglyceride, body weight, and skeletal muscle mass. The evaluation of metabolic disease risks revealed an association between the ratios of BCAAs and AAAs, hypertension, and metabolic syndrome. Conclusions: Our study is showed the associations between BCAA and AAA ratio, obesity, and obesity-related diseases using various analytical approaches. The elevated BCAA and AAA ratio could be early biomarkers for predicting future metabolic diseases in Korean population.

키워드

과제정보

This research was supported by Changwon National University in 2023-2024.

참고문헌

  1. Tenenbaum A, Motro M, Schwammenthal E, Fisman EZ. Macrovascular complications of metabolic syndrome: an early intervention is imperative. Int J Cardiol 2004; 97(2): 167-172. https://doi.org/10.1016/j.ijcard.2003.07.033
  2. Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci 2013; 1281(1): 64-91. https://doi.org/10.1111/nyas.12098
  3. Boenzi S, Diodato D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem 2018; 62(3): 443-454. https://doi.org/10.1042/EBC20170111
  4. Al-Abbasi FA. The effect of glycemic status on the serum amino acid profile of diabetic Saudi patients. J Drug Metab Toxicol 2013; 4(4): 157.
  5. Al-Abbasi FA. Trend analysis of the correlation of amino acid plasma profile with glycemic status in Saudi diabetic patients. J Adv Res 2012; 3(4): 305-313. https://doi.org/10.1016/j.jare.2011.10.001
  6. Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res 2016; 2016: 2794591.
  7. Yamada C, Kondo M, Kishimoto N, Shibata T, Nagai Y, Imanishi T, et al. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects. J Diabetes Investig 2015; 6(4): 408-415. https://doi.org/10.1111/jdi.12323
  8. Ishihara T, Iwasa M, Tanaka H, Kaito M, Ikoma J, Shibata T, et al. Effect of branched-chain amino acids in patients receiving intervention for hepatocellular carcinoma. World J Gastroenterol 2014; 20(10): 2673-2680. https://doi.org/10.3748/wjg.v20.i10.2673
  9. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology 2015; 61(6): 2018-2029. https://doi.org/10.1002/hep.27717
  10. Yamaguchi N, Mahbub MH, Takahashi H, Hase R, Ishimaru Y, Sunagawa H, et al. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population. Environ Health Prev Med 2017; 22(1): 35.
  11. Stancakova A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 2012; 61(7): 1895-1902. https://doi.org/10.2337/db11-1378
  12. Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 2012; 61(6): 1372-1380. https://doi.org/10.2337/db11-1355
  13. Badoud F, Lam KP, DiBattista A, Perreault M, Zulyniak MA, Cattrysse B, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res 2014; 13(7): 3455-3466. https://doi.org/10.1021/pr500416v
  14. Kugimiya A, Fukada R. Chemiluminescence detection of serine, proline, glycine, asparagine, leucine, and histidine by using corresponding aminoacyl-tRNA synthetases as recognition elements. Appl Biochem Biotechnol 2015; 176(4): 1195-1202. https://doi.org/10.1007/s12010-015-1639-6
  15. Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013; 36(3): 648-655. https://doi.org/10.2337/dc12-0895
  16. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005; 112(17): 2735-2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404
  17. Tillin T, Hughes AD, Wang Q, Wurtz P, Ala-Korpela M, Sattar N, et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 2015; 58(5): 968-979. https://doi.org/10.1007/s00125-015-3517-8
  18. Poggiogalle E, Fontana M, Giusti AM, Pinto A, Iannucci G, Lenzi A, et al. Amino acids and hypertension in adults. Nutrients 2019; 11(7): 1459.
  19. Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Ishihara T, et al. Usefulness of the plasma branchedchain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J Cardiol 2020; 75(6): 689-696. https://doi.org/10.1016/j.jjcc.2019.12.016
  20. Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition 2015; 31(1): 14-20. https://doi.org/10.1016/j.nut.2014.03.016
  21. Chew NW, Ng CH, Tan DJ, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab 2023; 35(3): 414-428.e3. https://doi.org/10.1016/j.cmet.2023.02.003
  22. Ministry of Health and Welfare (KR); Korea Disease Control and Prevention Agency (KDCA). Korea health statistics 2020: Korea National Health and Nutrition Examination Survey (KNHANES VIII-2). Seoul: KDCA; 2022.
  23. Chen S, Miki T, Fukunaga A, Eguchi M, Kochi T, Nanri A, et al. Associations of serum amino acids with insulin resistance among people with and without overweight or obesity: a prospective study in Japan. Clin Nutr 2022; 41(8): 1827-1833. https://doi.org/10.1016/j.clnu.2022.06.039
  24. Nagata C, Nakamura K, Wada K, Tsuji M, Tamai Y, Kawachi T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol 2013; 178(8): 1226-1232. https://doi.org/10.1093/aje/kwt112
  25. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014; 10(12): 723-736.
  26. Stone KP, Wanders D, Orgeron M, Cortez CC, Gettys TW. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 2014; 63(11): 3721-3733. https://doi.org/10.2337/db14-0464
  27. Fernstrom JD. Branched-chain amino acids and brain function. J Nutr 2005; 135(6 Suppl): 1539S-1546S. https://doi.org/10.1093/jn/135.6.1539S
  28. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012; 55(2): 321-330. https://doi.org/10.1007/s00125-011-2356-5
  29. Kinny-Koster B, Bartels M, Becker S, Scholz M, Thiery J, Ceglarek U, et al. Plasma amino acid concentrations predict mortality in patients with end-stage liver disease. PLoS One 2016; 11(7): e0159205.
  30. Mahbub MH, Yamaguchi N, Hase R, Takahashi H, Ishimaru Y, Watanabe R, et al. Plasma branched-chain and aromatic amino acids in relation to hypertension. Nutrients 2020; 12(12): 3791.
  31. Wang M, Ou Y, Yuan XL, Zhu XF, Niu B, Kang Z, et al. Heterogeneously elevated branched-chain/ aromatic amino acids among new-onset type-2 diabetes mellitus patients are potentially skewed diabetes predictors. World J Diabetes 2024; 15(1): 53-71. https://doi.org/10.4239/wjd.v15.i1.53
  32. Siomkajlo M, Rybka J, Mierzchala-Pasierb M, Gamian A, Stankiewicz-Olczyk J, Bolanowski M, et al. Specific plasma amino acid disturbances associated with metabolic syndrome. Endocrine 2017; 58(3): 553-562. https://doi.org/10.1007/s12020-017-1460-9
  33. Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 2016; 8(7): 405.
  34. Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulinresistant state. Adv Nutr 2011; 2(6): 445-456. https://doi.org/10.3945/an.111.000737
  35. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 2012; 15(5): 606-614. https://doi.org/10.1016/j.cmet.2012.01.024