DOI QR코드

DOI QR Code

Fabrication and Evaluation of Spectroscopic Grade Quasi-hemispherical CdZnTe Detector

  • Beomjun Park (Department of Materials Science and Engineering, Korea University) ;
  • Kyungeun Jung (Agency for Defense Development (ADD)) ;
  • Changsoo Kim (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 투고 : 2024.03.22
  • 심사 : 2024.04.30
  • 발행 : 2024.06.30

초록

Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd0.9Zn0.1Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.

키워드

과제정보

Changsoo Kim was supported by a research grant in 2023 from the Catholic University of Pusan (CUP No. 2023-01-020).

참고문헌

  1. Sordo SD, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors (Basel). 2009;9(5):3491-3526. https://doi.org/10.3390/s90503491
  2. Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci. 2001;48(4):950-959. https://doi.org/10.1109/23.958705
  3. Gregoire B, Pina-Jomir G, Bani-Sadr A, Moreau-Triby C, Janier M, Scheiber C. Four-minute bone SPECT using large-field cadmium-zinc-telluride camera. Clin Nucl Med. 2018;43(6):389-395. https://doi.org/10.1097/RLU.0000000000002062
  4. Ergun J, Buchholz M, Payne RK, Gorsuch D, Bisek J, Ergun DL, et al. CZT detector for dual-energy X-ray absorptiometry (DEXA). Proceedings of SPIE 4142, Penetrating Radiation Systems and Applications II; 2000 Dec 18; San Diego, CA. Available from: https://doi.org/10.1117/12.410561
  5. Fatemi S, Gong CH, Bortolussi S, Magni C, Postuma I, Bettelli M, et al. Innovative 3D sensitive CdZnTe solid state detector for dose monitoring in Boron Neutron Capture Therapy (BNCT). Nucl Instrum Methods Phys Res A. 2019;936:50-51. https://doi.org/10.1016/j.nima.2018.09.135
  6. Jo WJ, Jeong M, Kim HS, Kim SY, Ha JH. Preliminary research of CZT based PET system development in KAERI. J Radiat Prot Res. 2016;41(2):81-86. https://doi.org/10.14407/jrpr.2016.41.2.081
  7. Kim Y, Lee W. Development of a virtual Frisch-grid CZT detector based on the array structure. J Radiat Prot Res. 2020;45(1):35-44. https://doi.org/10.14407/jrpr.2020.45.1.35
  8. Bolotnikov AE, Camarda GS, Chen E, Cui Y, Gul R, Dedic V, et al. Using the TOF method to measure the electron lifetime in long-drift CdZnTe detectors. Proceedings of SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII; 2016 Nov 2; San Diego, CA. Available from: https://doi.org/10.1117/12.2240091
  9. Chen H, Li H, Reef MD, Sundaram AG, Eger J, Hugg JW, et al. Development of large-volume high-performance monolithic CZT radiation detector. Proceedings of SPIE 10762, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX; 2018 Sep 13; San Diego, CA. Available from: https://doi.org/10.1117/12.2321244
  10. Cui Y, Bolotnikov AE, Camarda G, Hossain A, Yang G, James RB. CZT virtual Frisch-grid detector: principles and applications. Proceedings of 2009 IEEE Long Island Systems, Applications and Technology Conference; 2009 May 1; Farmingdale, NY. Available from: https://doi.org/10.1109/LISAT.2009.5031559
  11. Park B, Kim Y, Seo S, Byun J, Kim K. Passivation effect on large volume CdZnTe crystals. Nucl Eng Technol. 2022;54(12):4620-4624. https://doi.org/10.1016/j.net.2022.06.005
  12. Roy UN, Burger A, James RB. Growth of CdZnTe crystals by the traveling heater method. J Cryst Growth. 2013;379:57-62. https://doi.org/10.1016/j.jcrysgro.2012.11.047
  13. Zanio K. Use of various device geometries to improve the performance of CdTe detectors. Rev Phys Appl. 1977;12(2):343-347. https://doi.org/10.1051/rphysap:01977001202034300
  14. He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl Instrum Methods Phys Res A. 2001;463(1-2):250-267. https://doi.org/10.1016/S0168-9002(01)00223-6
  15. Roy UN, Camarda GS, Cui Y, Gul R, Hossain A, Yang G, et al. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci Rep. 2019;9(1):1620.
  16. Hwang S, Yu H, Bolotnikov AE, James RB, Kim K. Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Trans Nucl Sci. 2019;66(11):2329-2332. https://doi.org/10.1109/TNS.2019.2944969
  17. Brovko A, Adelberg A, Chernyak L, Gorfman S, Ruzin A. Impact of polishing on crystallinity and static performance of Cd1-xZnxTe. Nucl Instrum Methods Phys Res A. 2020;984:164568.
  18. Park B, Ko J, Byun J, Pandey S, Park B, Kim J, et al. Solution-grown MAPbBr3 single crystals for self-powered detection of X-rays with high energies above one megaelectron volt. Nanomaterials (Basel). 2023;13(15):2157.
  19. Eisen Y, Horovitz Y. Correction of incomplete charge collection in CdTe detectors. Nucl Instrum Methods Phys Res A. 1994;353(1-3):60-66. https://doi.org/10.1016/0168-9002(94)91603-9
  20. Butcher J, Hamade M, Petryk M, Bolotnikov AE, Camarda GS, Cui Y, et al. Drift time variations in CdZnTe detectors measured with alpha particles and gamma rays: their correlation with detector response. IEEE Trans Nucl Sci. 2013;60(2):1189-1196. https://doi.org/10.1109/TNS.2012.2234762
  21. Bolotnikov AE, Abdul-Jabbar NM, Babalola OS, Camarda GS, Cui Y, Hossain A, et al. Effects of Te inclusions on the performance of CdZnTe radiation detectors. IEEE Trans Nucl Sci. 2008;55(5):2757-2764. https://doi.org/10.1109/TNS.2008.2003355
  22. Park B, Kim Y, Seo J, Byun J, Dedic V, Franc J, et al. Bandgap engineering of Cd1-xZnxTe1-ySey (0
  23. Kim Y, Ko J, Byun J, Seo J, Park B. Passivation effect on Cd0.95Mn0.05Te0.98Se0.02 radiation detection performance. Appl Radiat Isot. 2023;200:110914.
  24. Fochuk P, Grill R, Panchuk O. The nature of point defects in CdTe. J Electron Mater. 2006;35:1354-1359. https://doi.org/10.1007/s11664-006-0268-9
  25. Turjanska L, Hoschl P, Belas E, Grill R, Franc J, Moravec P. Defect structure of CdZnTe. Nucl Instrum Methods Phys Res A. 2001;458(1-2):90-95. https://doi.org/10.1016/S0168-9002(00)00925-6