DOI QR코드

DOI QR Code

Microcystins and Nodularin in Agricultural Products: Toxicity, Analytical Methods, Contamination Pathway, Occurrence, and Safety Management

농산물 내 마이크로시스틴과 노둘라린: 독성, 분석법, 오염 경로, 오염 현황 및 관리 동향

  • Su Been Park (School of Food Science and Technology, Chung-Ang University) ;
  • Sang Yoo Lee (School of Food Science and Technology, Chung-Ang University) ;
  • Ji Eun Park (School of Food Science and Technology, Chung-Ang University) ;
  • Jae Sung Kim (KOTITI Testing & Research Institute) ;
  • Hyang Sook Chun (School of Food Science and Technology, Chung-Ang University)
  • 박수빈 (중앙대학교 생명공학대학 식품공학과) ;
  • 이상유 (중앙대학교 생명공학대학 식품공학과) ;
  • 박지은 (중앙대학교 생명공학대학 식품공학과) ;
  • 김재성 ((사)코티티시험연구원) ;
  • 전향숙 (중앙대학교 생명공학대학 식품공학과)
  • Received : 2024.04.02
  • Accepted : 2024.04.25
  • Published : 2024.06.30

Abstract

The peptide-type hepatotoxins microcystins (MCs) and nodularin (NOD) are secondary metabolites produced by cyanobacteria. MCs and NOD can bioaccumulate in agricultural products through toxin-contaminated water, soil, and manure and can cause human health risks through the consumption of agricultural products. As interest in the contamination of agricultural products by MCs or NOD has recently emerged, occurrence studies based on various analysis methods for agricultural products have been conducted. However, studies on agricultural products are still insufficient compared to research on drinking water and seafood. In addition, research is primarily conducted on agricultural products grown in areas where green algae occur, but not on marketed products. In the present study, we review the physicochemical properties, toxicity, analysis methods, occurrence studies, and management status of MCs and NOD in agricultural products to build a foundation for systematic monitoring and safety management.

펩타이드형 독소인 마이크로시스틴(microcystins, MCs)과 노둘라린(nodularin, NOD)은 남조류라고도 알려진 시아노박테리아에 의해 생성되는 2차 대사산물로, 독소에 오염된 물, 토양 및 비료를 사용함으로써 농산물 내에 축적되고 이를 사람이 섭취함으로써 건강상 위해가 발생할 수 있다. 최근 MCs과 NOD의 농산물 내 오염에 대한 관심이 대두되며 국내외에서 여러 분석법을 기반으로 농산물 내 오염 수준을 조사하고 있다. 하지만 아직까지 수행된 연구가 많지 않으며, 특히 펩타이드형 독소 중 MCs의 분석 연구에 치중되어 있거나 오염 취약 지역에서 재배한 농산물이 주로 오염도 조사에 사용되는 등 연구에 한계가 있으므로 MCs과 NOD의 관리를 위해서는 보다 많은 체계적인 연구가 필요할 것으로 생각된다. 본 연구에서는 체계적인 모니터링 및 안전관리의 기반을 마련하기 위해 MCs 및 NOD의 이화학적 특성, 독성, 분석법, 오염사례 및 관리현황에 대해 기술하였다.

Keywords

Acknowledgement

본 연구는 2024년도 식품의약품안전처의 연구개발비(24192MFDS303, 21153MFDS605)로 수행되었으며, 이에 감사드립니다.

References

  1. Haque, F., Banayan, S., Yee, J., Chiang, Y.W., Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere, 183, 164-175 (2017).
  2. Rastogi, R.P., Sinha, R.P., Incharoensakdi, A., The cyanotoxin-microcystins: current overview. Rev. Environ. Sci. Biotechnol., 13, 215-249 (2014).
  3. Sivonen, K., Jones, G., 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 1st ed, CRC Press, London, England, pp. 290-307.
  4. Svircev, Z., Lalic, D., Bojadzija Savic, G., Tokodi, N., Drobac Backovic, D., Chen, L., Meriluoto, J., Codd, G.A., Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol., 93, 2429-2481 (2019).
  5. Yuan, M., Carmichael, W.W., Hilborn, E.D., Microcystin analysis in human sera and liver from human fatalities in Caruaru, Brazil 1996. Toxicon, 48, 627-640 (2006).
  6. Arman, T., Clarke, J.D., Microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. Toxins, 13, 537 (2021).
  7. Solter, P., Liu, Z., Guzman, R., Decreased hepatic ALT synthesis is an outcome of subchronic microcystin-LR toxicity. Toxicol. Appl. Pharmacol., 164, 216-220 (2000).
  8. Mrdjen, I., Morse, M.A., Ruch, R.J., Knobloch, T.J., Choudhary, S., Weghorst, C.M., Lee, J., Impact of microcystin-LR on liver function varies by dose and sex in mice. Toxins, 10, 435 (2018).
  9. Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael. W.W., Fujiki, H., Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol., 118, 420-424 (1992).
  10. Gademann, K., Portmann, C., Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr. Org. Chem., 12, 326-341 (2008).
  11. Towner, R.A., Sturgeon, S.A., Khan, N., Hou, H., Swartz, H.M., In vivo assessment of nodularin-induced hepatotoxicity in the rat using magnetic resonance techniques (MRI, MRS and EPR oximetry). Chem. Biol. Interact., 139, 231-250 (2002).
  12. Ufelmann, H., Schrenk, D., Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol. In Vitro., 29, 16-26 (2015).
  13. Stroski, K.M., Roelke, D.L., Kieley, C.M., Park, R., Campbell, K.L., Klobusnik, N.H., Walker, J.R., Cagle, S.E., Labonte, J.M., Brooks, B.W., What, how, when, and where: Spatiotemporal water quality hazards of cyanotoxins in subtropical eutrophic reservoirs. Environ. Sci. Technol., 58, 1473-1483 (2024).
  14. Luckas, B., Kruger, T., Roder, K., 2017. Phycotoxins and food safety. Chemical contaminants and residues in food, 2nd ed. In: Schrenk, D., Cartus, A. (Ed),. Elsevier Science, New York, NY, USA, pp. 337-378.
  15. Diez-Quijada, L., Prieto, A.I., Guzman-Guillen, R., Jos, A., Camean, A.M., Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: a review. Food Chem. Toxicol., 125, 106-132 (2019).
  16. Chaffin, J.D., Westrick, J.A., Reitz, L.A., Bridgeman, T.B., Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. Harmful Algae, 127, 102466 (2023).
  17. Falconer, I.R., Is there a human health hazard from microcystins in the drinking water supply? Acta hydrochim. Hydrobiol., 33, 64-71 (2005).
  18. Jia, J., Luo, W., Lu, Y., Giesy, J.P., Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: assessment of risks to humans. Sci. Total Environ., 487, 224-232 (2014).
  19. Larson, D., Ahlgren, G., Willen, E., Bioaccumulation of microcystins in the food web: a field study of four Swedish lakes. Inland Waters, 4, 91-104 (2014).
  20. Espana Amortegui, J.C., Pekar, H., Retrato, M.D.C., Persson, M., Karlson, B., Bergquist, J., Zuberovic-Muratovic, A., LC-MS/MS Analysis of cyanotoxins in Bivalve Mollusks-method development, validation and first evidence of occurrence of nodularin in mussels (Mytilus edulis) and oysters (Magallana gigas) from the west coast of Sweden. Toxins, 15, 329 (2023).
  21. Xiang, L., Li, Y.W., Wang, Z.R., Liu, B.L., Zhao, H.M., Li, H., Cai, Q.Y., Mo, C.H., Li, Q.X., Bioaccumulation and phytotoxicity and human health risk from microcystin-LR under various treatments: a pot study. Toxins, 12, 523 (2020).
  22. Melaram, R., Newton, A.R., Chafin, J., Microcystin contamination and toxicity: implications for agriculture and public health. Toxins, 14, 350, (2022).
  23. Mohamed, Z.A., Al Shehri, A.M., Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater., 172, 310-315 (2009).
  24. Chen, J., Han, F.X., Wang, F., Zhang, H., Shi, Z., Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol. Environ. Saf., 76, 193-199 (2012).
  25. Li, Y.W., Zhan, X.J., Xiang, L., Deng, Z.S., Huang, B.H., Wen, H.F., Sun, T.F., Cai, Q.Y., Li, H., Mo, C.H., Analysis of trace microcystins in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadrupole mass spectrometry. J. Agric. Food Chem., 62, 11831-11839 (2014).
  26. Romero-Oliva, C.S., Contardo-Jara, V., Block, T., Pflugmacher, S., Accumulation of microcystin congeners in different aquatic plants and crops-a case study from lake Amatitlan, Guatemala. Ecotoxicol. Environ. Saf., 102, 121-128 (2014).
  27. Wijewickrama, M.M., Manage, P.M., Accumulation of Microcystin-LR in grains of two rice varieties (Oryza sativa L.) and a leafy vegetable, Ipomoea aquatica. Toxins, 11, 432 (2019).
  28. Abdullahi, H., Tanimu, Y., Akinyemi, S.A., do Carmo Bittencourt-Oliveira, M., Chia, M.A., Assessment of microcystins in surface water and irrigated vegetables in Kwaru stream, Hayin Danmani, Kaduna-Nigeria. Environ. Sci. Pollut. Res. Int., 29, 78303-78313 (2022).
  29. Redouane, E.M., Tazart, Z., Lahrouni, M., Mugani, R., Elgadi, S., Zine, H., Zerrifi, S.E.A., Haida, M., Martins, J.C., Campos, A., Oufdou, K., Vasconcelos, V., Oudra, B., Health risk assessment of lake water contaminated with microcystins for fruit crop irrigation and farm animal drinking. Environ. Sci. Pollut. Res. Int., 30, 80234-80244 (2023).
  30. Carmichael, W.W., Beasley, V., Bunner, D.L., Eloff, J.N., Falconer, I., Gorham, P., Harada, K., Krishnamurthy, T., Yu, M.J., Moore, R.E., Rinehart, K., Runnegar, M., Skulberg, O.M., Watanabe, M., Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon, 26, 971-973 (1988).
  31. Bouaicha, N., Miles, C.O., Beach, D.G., Labidi, Z., Djabri, A., Benayache, N.Y., Nguyen-Quang, T., Structural diversity, characterization and toxicology of microcystins. Toxins, 11, 714 (2019).
  32. Lawton, L.A., Robertson, P.K., Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chem. Soc., Rev., 28, 217-224 (1999).
  33. Wang, X., Utsumi, M., Yang, Y., Shimizu, K., Li, D., Zhang, Z., Sugiura, N., Removal of microcystins (-LR, -YR, -RR) by highly efficient photocatalyst Ag/Ag3PO4 under simulated solar light condition. Chem. Eng. J., 230, 172-179 (2013).
  34. Beattie, K.A., Kaya, K., Codd, G.A., The cyanobacterium Nodularia PCC 7804, of freshwater origin, produces [LHar2] nodularin. Phytochemistry, 54, 57-61 (2000).
  35. Stern, A., Rotter, A., Novak, M., Filipic, M., Zegura, B., Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells. Food Chem. Toxicol., 124, 349-358 (2019).
  36. Chen, G., Wang, L., Wang, M., Hu, T., Comprehensive insights into the occurrence and toxicological issues of nodularins. Mar. Pollut. Bull., 162, 111884 (2021).
  37. Rinehart, K.L., Namikoshi, M., Choi, B.W., Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol., 6, 159-176 (1994).
  38. Miao, H.F., Qin, F., Tao, G.J., Tao, W.Y., Ruan, W.Q., Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere, 79, 355-361 (2010).
  39. Fischer, W.J., Altheimer, S., Cattori, V., Meier, P.J., Dietrich, D.R., Hagenbuch, B., Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol., 203, 257-263 (2005).
  40. Campos, A., Vasconcelos, V., Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mol. Sci., 11, 268-287 (2010).
  41. Feurstein, D., Holst, K., Fischer, A., Dietrich, D.R., Oatpassociated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol. Appl. Pharmacol., 234, 247-255 (2009).
  42. Ge, K., Du, X., Liu, H., Meng, R., Wu, C., Zhang, Z., Liang, X., Yang, J., Zhang, H., The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch. Toxicol., 98, 663-687 (2024).
  43. Niedermeyer, T.H.J., Daily, A., Swiatecka-Hagenbruch, M., Moscow, J.A., Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One, 9, e91476 (2014).
  44. Maric, P., Ahel, M., Marakovic, N., Loncar, J., Mihaljevic, I., Smital, T., Selective interaction of microcystin congeners with zebrafish (Danio rerio) Oatp1d1 transporter. Chemosphere, 283, 131155 (2021).
  45. Yoshizawa, S., Matsushima, R., Watanabe, M.F., Harada, K.I., Ichihara, A., Carmichael, W.W., Fujiki, H., Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. J. Cancer Res. Clin. Oncol., 116, 609-614 (1990).
  46. Gulledge, B.M., Aggen, J.B., Huang, H.B., Nairn, A.C., Chamberlin, A.R., The microcystins and nodularins: cyclic polypeptide inhibitors of PP1 and PP2A. Curr. Med. Chem., 9, 1991-2003 (2002).
  47. Zhou, M., Tu, W.W., Xu, J., Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon, 101, 92-100 (2015).
  48. Janssens, V., Goris, J., Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem. J., 353, 417-439 (2001).
  49. McLellan, N.L., Manderville, R.A., Toxic mechanisms of microcystins in mammals. Toxicol. Res., 6, 391-405 (2017).
  50. World Health Organization (WHO), 2020. Cyanobacterial toxins: Microcystins. background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments, WHO, Geneva, Switzerland, pp. 5.
  51. Shi, L., Du, X., Liu, H., Chen, X., Ma, Y., Wang, R., Tian, Z., Zhang, S., Guo, H., Zhang, H., Update on the adverse effects of microcystins on the liver. Environ. Res., 195, 110890 (2021).
  52. Xu, S., Yi, X., Liu, W., Zhang, C., Massey, I.Y., Yang, F., Tian, L., A review of nephrotoxicity of microcystins. Toxins, 12, 693 (2020).
  53. Wu, J.X., Huang, H., Yang, L., Zhang, X.F., Zhang, S.S., Liu, H.H., Wang, Y.Q., Yuan, L., Cheng, X.M., Zhuang, D.G., Zhang, H.Z., Gastrointestinal toxicity induced by microcystins. World J. Clin. Cases, 6, 344-354 (2018).
  54. Wang, C., Gu, S., Yin, X., Yuan, M., Xiang, Z., Li, Z., Cao, H., Meng, X., Hu, K., Han, X., The toxic effects of microcystin-LR on mouse lungs and alveolar type II epithelial cells. Toxicon, 115, 81-88 (2016).
  55. Chen, Y., Xu, J., Li, Y., Han, X., Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod. Toxicol., 31, 551-557 (2011).
  56. Zhang, S., Du, X., Liu, H., Losiewic, M.D., Chen, X., Ma, Y., Wang, R., Tian, Z., Shi, L., Guo, H., Zhang, H., The latest advances in the reproductive toxicity of microcystin-LR. Environ. Res., 192, 110254 (2021).
  57. Zhang, Z., Du, X., Zhang, S., Liu, H., Fu, Y., Wang, F., Zhang, H., Adverse effects of microcystins on sperm: A systematic review. Toxicology, 490, 153507 (2023).
  58. Cao, L., Massey, I.Y., Feng, H., Yang, F., A review of cardiovascular toxicity of microcystins. Toxins, 11, 507 (2019).
  59. Hu, Y., Chen, J., Fan, H., Xie, P., He, J., A review of neurotoxicity of microcystins. Environ. Sci. Pollut. Res. Int., 23, 7211-7219 (2016).
  60. Henri, J., Huguet, A., Delmas, J.M., Besson, A., Sanders, P., Fessard, V., Low in vitro permeability of the cyanotoxin microcystin-LR across a Caco-2 monolayer: with identification of the limiting factors using modelling. Toxicon, 91, 5-14 (2014).
  61. Henri, J., Lanceleur, R., Delmas, J.M., Fessard, V., Huguet, A., Permeability of the cyanotoxin microcystin-RR across a Caco-2 cells monolayer. Toxins, 13, 178 (2021).
  62. Ito, E., Kondo, F., Harada, K.I., First report on the distribution of orally administered microcystin-LR in mouse tissue using an immunostaining method. Toxicon, 38, 37-48 (2000).
  63. Robinson, N.A., Pace, J.G., Matson, C.F., Miura, G.A., Lawrence, W.B., Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. J. Pharmacol. Exp. Ther., 256, 176-182 (1991).
  64. Falconer, I.R., Buckley, T., Runnegar, M.T., Biological half-life, organ distribution and excretion of 125I-labelled toxic peptide from the blue-green alga Microcystis aeruginosa. Aust. J. Biol. Sci., 39, 17-21 (1986).
  65. Schmidt, J.R., Wilhelm, S.W., Boyer, G.L., The fate of microcystins in the environment and challenges for monitoring. Toxins, 6, 3354-3387 (2014).
  66. Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K.A., Krause, E., Codd, G.A., Steinberg, C.E., Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim. Biophys. Acta. Gen. Subj., 1425, 527-533 (1998).
  67. Kondo, F., Ikai, Y., Oka, H., Okumura, M., Ishikawa, N., Harada, K., Matsuura, H., Suzuki, M., Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins. Chem. Res. Toxicol., 5, 591-596 (1992).
  68. Wang, Q., Xie, P., Chen, J., Liang, G., Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon, 52, 721-727 (2008).
  69. Yoshida, T., Makita, Y., Nagata, S., Tsutsumi, T., Yoshida, F., Sekijima, M., Tamura, S., Ueno, Y., Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat. Toxins, 5, 91-95 (1997).
  70. Fawell, J.K., Mitchell, R.E., Everett, D.J., Hill, R.E., The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR. Hum. Exp. Toxicol., 18, 162-167 (1999).
  71. Rao, P.V., Gupta, N., Jayaraj, R., Bhaskar, A.S., Jatav, P.C., Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 140, 11-19 (2005).
  72. Chernoff, N., Hunter III, E.S., Hall, L.L., Rosen, M.B., Brownie, C.F., Malarkey, D., Marr, M., Herkovits, J., Lack of teratogenicity of microcystin-LR in the mouse and toad. J. Appl. Toxicol., 22, 13-17 (2002).
  73. Stoner, R.D., Adams, W.H., Slatkin, D.N., Siegelman, H.W., The effects of single L-amino acid substitutions on the lethal potencies of the microcystins. Toxicon, 27, 825-828 (1989).
  74. Stotts, R.R., Namikoshi, M., Haschek, W.M., Rinehart, K.L., Carmichael, W.W., Dahlem, A.M., Beasley, V.R., Structural modifications imparting reduced toxicity in microcystins from Microcystis spp. Toxicon, 31, 783-789 (1993).
  75. Svircev, Z., Lujic, J., Marinovic, Z., Drobac, D., Tokodi, N., Stojiljkovic, B., Meriluoto, J., Toxicopathology induced by microcystins and nodularin: a histopathological review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 33, 125-167 (2015).
  76. Vankova, D.G., Pasheva, M.G., Kiselova-Kaneva, Y.D., Ivanov, D.L., Ivanova, D.G., 2019. Mechanisms of cyanotoxin toxicity-carcinogenicity, anticancer potential, and clinical toxicology. Medical Toxicology, In: Pinar, E., Tomohisa, O (Ed), IntechOpen, Rijeka, Croatia, pp. 153-164.
  77. Faltermann, S., Grundler, V., Gademann, K., Pernthaler, J., Fent, K., Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress. Aquat. Toxicol., 171, 77-87 (2016).
  78. Buratti, F.M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., Funari, E., Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol., 91, 1049-1130 (2017).
  79. Runnegar, M.T., Jackson, A.R., Falconer, I.R., Toxicity of the cyanobacterium Nodularia spumigena Mertens. Toxicon, 26, 143-151 (1988).
  80. Namikoshi, M., Choi, B.W., Sun, F., Rinehart, K.L., Evans, W.R., Carmichael, W.W., Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystinLR, potent cyanobacterial cyclic peptide hepatotoxins. Chem. Res. Toxicol., 6, 151-158 (1993).
  81. Eriksson, J.E., Meriluoto, J.A.O., Kujari, H.P., Osterlund, K., Fagerlund, K., Hallbom, L., Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon, 26, 161-166 (1988).
  82. Sivonen, K., Kononen, K., Carmichael, W.W., Dahlem, A.M., Rinehart, K.L., Kiviranta, J., Niemela, S.I., Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microbiol., 55, 1990-1995 (1989).
  83. Testai, E., Buratti, F.M., Funari, E., Manganelli, M., Vichi, S., Arnich, N., Bire, R., Fessard, V., Sialehaamoa, A., Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ., 13, 1-309 (2016).
  84. Bavithra, G., Azevedo, J., Oliveira, F., Morais, J., Pinto, E., Ferreira, I.M.P.L.V.O., Vasconcelos, V., Campos, A., Almeida, C.M.R., Assessment of constructed Wetlands' potential for the removal of cyanobacteria and microcystins (MC-LR). Water, 12, 10 (2019).
  85. Gupta, N., Pant, S.C., Vijayaraghavan, R., Rao, P.V., Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology, 188, 285-296 (2003).
  86. Honkanan, R.E., Codispoti, B.A., Tse, K., Boynton, A.L., Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon, 32, 339-350 (1994).
  87. Heresztyn, T., Nicholson, B.C., A colorimetric protein phosphatase inhibition assay for the determination of cyanobacterial peptide hepatotoxins based on the dephosphorylation of phosvitin by recombinant protein phosphatase 1. Environ. Toxicol., 16, 242-252 (2001).
  88. Robillot, C., Hennion, M.C., Issues arising when interpreting the results of the protein phosphatase 2A inhibition assay for the monitoring of microcystins. Anal. Chim. Acta, 512, 339-346 (2004).
  89. Blom, J.F., Juttner, F., High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon, 46, 465-470 (2005).
  90. Mountfort, D.O., Holland, P., Sprosen, J., Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LCMS. Toxicon, 45, 199-206 (2005).
  91. Ikehara, T., Imamura, S., Oshiro, N., Ikehara, S., Shinjo, F., Yasumoto, T., A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins. Toxicon, 51, 1368-1373 (2008).
  92. Garibo, D., Flores, C., Ceto, X., Prieto-Simon, B., Del Valle, M., Caixach, J., Diogene, J., Campas, M., Inhibition equivalency factors for microcystin variants in recombinant and wild-type protein phosphatase 1 and 2A assays. Environ. Sci. Pollut. Res. Int., 21, 10652-10660 (2014).
  93. Altaner, S., Jaeger, S., Fotler, R., Zemskov, I., Wittmann, V., Schreiber, F., Dietrich, D.R., Machine learning prediction of cyanobacterial toxin (microcystin) toxicodynamics in humans. ALTEX, 37, 24-36 (2020).
  94. Lee, J.H., Shin, Y., Cho, Y.C., Estimating toxic equivalent factors for microcystin congeners using protein phosphatase inhibition assay. J. Microbiol., 59, 61-68 (2023).
  95. Wolf, H.U., Frank, C., Toxicity assessment of cyanobacterial toxin mixtures. Environ. Toxicol., 17, 395-399 (2002).
  96. Manubolu, M., Lee, J., Riedl, K.M., Kua, Z.X., Collart, L.P., Ludsin, S.A., Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS. Harmful Algae, 76, 47-57 (2018).
  97. Van Camp, C., Van Hassel, W.H.R., Abdallah, M.F., Masquelier, J., Simultaneous detection and quantification of aflatoxin M1, eight microcystin congeners and nodularin in dairy milk by LC-MS/MS. Chemosensors, 11, 511 (2023).
  98. Van Hassel, W.H.R., Masquelier, J., Andjelkovic, M., Rajkovic, A., Towards a better quantification of cyanotoxins in fruits and vegetables: validation and application of an UHPLC-MS/MS-based method on Belgian products. Separations, 9, 319 (2022).
  99. Massey, I.Y., Wu, P., Wei, J., Luo, J., Ding, P., Wei, H., Yang, F., A mini review on detection methods of microcystins. Toxins, 12, 641 (2020).
  100. Abdallah, M.F., Van Hassel, W.H.R., Andjelkovic, M., Wilmotte, A., Rajkovic, A., Cyanotoxins and food contamination in developing countries: review of their types, toxicity, analysis, occurrence and mitigation strategies. Toxins, 13, 786 (2021).
  101. Ahari, H., Nowruzi, B., Anvar, A.A., Porzani, S.J., The toxicity testing of cyanobacterial toxins in vivo and in vitro by mouse bioassay: a review. Mini Rev. Med. Chem., 22, 1131-1151 (2022).
  102. Nicholson, B.C., Burch, M.D., 2001. Evaluation of analytical methods for detection and quantification of cyanotoxins in relation to Australian drinking water guidelines. National Health and Medical Research Council of Australia, Canberra, Australia, pp. 57.
  103. Hawkins, P.R., Novic, S., Cox, P., Neilan, B.A., Burns, B.P., Shaw, G., Wickramasinghe, W., Peerapornpisal, Y., Ruangyuttikarn, W., Itayama, T., Saitou, T., Mizuochi, M., Inamori, Y., A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment. J. Water Supply Res. Technol., 54, 509-518 (2005).
  104. Fernandez, J.J., Candenas, M.L., Souto, M.L., Trujillo, M.M., Norte, M., Okadaic acid, useful tool for studying cellular processes. Curr. Med. Chem., 9, 229-262 (2002).
  105. Kohoutek, J., Adamovsky, O., Oravec, M., Simek, Z., Palikova, M., Kopp, R., Blaha, L., LC-MS analyses of microcystins in fish tissues overestimate toxin levels-critical comparison with LC-MS/MS. Anal. Bioanal. Chem., 398, 1231-1237 (2010).
  106. Davies, W.R., Lam, P.K.S., Jack, R., Lam, M.H.W., Wu, R., Nugegoda, D., Optimising SPME-HPLC to determine the cyanotoxin nodularin in water: a preliminary investigation. Australas. J. Ecotoxicol., 15, 39-44 (2009).
  107. Lawton, L.A., Edwards, C., Codd, G.A., Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525-1530 (1994).
  108. Wang, C., Tian, C., Tian, Y., Feng, B., We, S., Li, Y., Wu, X., Xiao, B., A sensitive method for the determination of total microcystins in water and sediment samples by liquid chromatography with fluorescence detection. Anal. Methods, 7, 759-765 (2015).
  109. Kim, I.S., Nguyen, G.H., Kim, S.J., Jang, A., Qualitative analysis of the most toxic and abundant microcystin variants (LR, RR, and YR) by using LCMS-IT-TOF. J. Indus. Eng. Chem., 29, 375-381 (2015).
  110. United States Environmental Protection Agency (EPA), (2024, March 20). Detection methods for cyanotoxins. Retrieved from https://www.epa.gov/ground-water-anddrinking-water/detection-methods-cyanotoxins
  111. Guo, Y.C., Lee, A.K., Yates, R.S., Liang, S., Rochelle, P.A., Analysis of microcystins in drinking water by ELISA and LC/MS/MS. J. Am. Wat. Works Assoc., 109, 13-25 (2017).
  112. Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., Neilan, B., On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs, 8, 1650-1680 (2010).
  113. Zhou, C., Chen, H., Zhao, H., Wang, Q., Microcystin biosynthesis and toxic effects. Algal Res., 55, 102277 (2021).
  114. Lyon-Colbert, A., Su, S., Cude, C., A systematic literature review for evidence of Aphanizomenon flos-aquae toxigenicity in recreational waters and toxicity of dietary supplements: 2000-2017. Toxins, 10, 254 (2018).
  115. Gehringer, M.M., Adler, L., Roberts, A.A., Moffitt, M.C., Mihali, T.K., Mills, T.J., Fieker, C., Neilan, B.A., Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J., 6, 1834-1847 (2012).
  116. Davis, T.W., Berry, D.L., Boyer, G.L., Gobler, C.J., The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715-725 (2009).
  117. Paerl, H.W., Nuisance phytoplankton blooms in coastal, estuarine, and inland waters 1. Limnol. Oceanogr., 33, 823-843 (2003).
  118. Hudnell, H.K., 2008. Cyanobacterial harmful algal blooms: state of the science and research needs, In: Hundell, H. K (Ed), Springer, New York, NY, USA, pp. 619.
  119. Hou, X., Feng, L., Dai, Y., Hu, C., Gibson, L., Tang, J., Lee, Z., Wang, Y., Cai, X., Liu, J., Zheng, Y., Zheng, C., Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci., 15, 130-134, (2022).
  120. Kulabhusan, P.K., Campbell, K., Recent trends in the detection of freshwater cyanotoxins with a critical note on their occurrence in Asia. Trends Environ. Anal. Chem., 32, e00150 (2021).
  121. Chen, J., Song, L., Dai, J., Gan, N., Liu, Z., Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon, 43, 393-400 (2004).
  122. Pflugmacher, S., Jung, K., Lundvall, L., Neumann, S., Peuthert, A., Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environ. Toxicol. Chem., 25, 2381-2387 (2006).
  123. Pflugmacher, S., Reduction in germination rate and elevation of peroxidase activity in Zea mays seedlings due to exposure to different microcystin analogues and toxic cell free cyanobacterial crude extract. J. Appl. Bot. Food Qual., 81, 45-48 (2007).
  124. Saqrane, S., Ghazali, I.E., Oudra, B., Bouarab, L., Vasconcelos, V., Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J. Environ. Sci. Health B, 43, 443-451 (2008).
  125. Pflugmacher, S., Hofmann, J., Hubner, B., Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environ. Toxicol. Chem., 26, 2710-2716 (2007).
  126. Pereira, S., Saker, M.L., Vale, M., Vasconcelos, V.M., Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bull. Environ. Contam. Toxicol., 83, 81-84 (2009).
  127. Campos, A., Redouane, E.M., Freitas, M., Amaral, S., Azevedo, T., Loss, L., Mathe, C., Mohamed, Z.A., Oudra, B., Vasconcelos, V., Impacts of microcystins on morphological and physiological parameters of agricultural plants: a review. Plants, 10, 639 (2021).
  128. Cordeiro-Araujo, M.K., Chia, M.A., Arruda-Neto, J.D.T., Tornisielo, V.L., Vilca, F.Z., Bittencourt-Oliveira, M.D.C., Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: human health risk assessment. Sci. Total Environ., 566-567, 1379-1386 (2016).
  129. Xiang, L., Li, Y.W., Liu, B.L., Zhao, H.M., Li, H., Cai, Q.Y., Mo, C.H., Wong, M.H., Li, Q.X., High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int., 133, 105142 (2019).
  130. Cao, Q., Steinman, A.D., Wan, X., Xie, L., Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China. Environ. Pollut., 240, 44-50 (2018).
  131. Corbel, S., Mougin, C., Nelieu, S., Delarue, G., Bouaicha, N., Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ((14)C-MC-LR). Sci. Total Environ., 541, 1052-1058 (2016).
  132. Levizou, E., Papadimitriou, T., Papavasileiou, E., Papadimitriou, N., Kormas, K.A., Root vegetables bioaccumulate microcystins-LR in a developmental stage-dependent manner under realistic exposure scenario: the case of carrot and radish. Agric. Water Manag., 240, 106274 (2020).
  133. Ministry of Food and Drug Safety (MFDS), (2023, January 19). All 130 samples of rice, radish, and cabbage tested negative for microcystins (press release). Retrieved from https://impfood.mfds.go.kr/CFBBB02F02/getCntntsDetail?cntntsSn=503331
  134. Korean Federation for Environmental Movement (KFEM), (2024, March 20). Microcystin, a carcinogen, detected again in rice... An urgent investigation and management plan must be established, Retrieved from https://kfem.or.kr/waterandriver/?idx=17911766&bmode=view
  135. Korean Federation for Environmental Movement (KFEM), (2024, March 20) World Water Day Press Conference - 'Carcinogens and reproductive toxicity' green algae toxicity detected in Nakdong River rice, Retrieved from https://kfem.or.kr/waterandriver/?idx=17911708&bmode=view
  136. Daegu MBC, (2024, March 20). [After listening to it] A poisonous river, Nakdong River | Big Bunker, Retrieved from https://dgmbc.com/article/5Gq2txhuDzPesADD
  137. Xiao, F.G., Zhao, X.L., Tang, J., Gu, X.H., Zhang, J.P., Niu, W.M., Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out. Arch. Environ. Contam. Toxicol., 57, 256-263 (2009).
  138. Chia, M.A., Auta, Z.Z., Esson, A.E., Yisa, A.G., Abolude, D.S., Assessment of microcystin contamination of Amaranthus hybridus, Brassica oleracea, and Lactuca sativa sold in markets: a case study of Zaria, Nigeria. Environ. Monit. Assess., 191, 569 (2019).
  139. United States Environmental Protection Agency (EPA), 2015. Drinking water health advisory for the cyanobacterial microcystin toxins. (EPA 820-R-15-100), Washington D.C., USA.
  140. Heinze, R., Toxicity of the cyanobacterial toxin microcystin-LR to rats after 28 days intake with the drinking water. Environ. Toxicol., 14, 57-60 (1999).
  141. Ministry of Environment, (2023, July 2). Expansion of water quality monitoring items for cyanotoxins and shellfish toxins in drinking water (press release). Retrieved from http://27.101.216.208/home/web/board/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%EB%A8%B9%EB%8A%94%EB%AC%BC+%EC%A1%B0%EB%A5%98%EB%8F%85%EC%86%8C+%EB%B0%8F+%EA%B9%94%EB%94%B0%EA%B5%AC+%EA%B4%80%EB%A0%A8+%EC%88%98%EC%A7%88%EA%B0%90%EC%8B%9C%ED%95%AD%EB%AA%A9+%ED%99%95%EB%8C%80&menuId=10525&orgCd=&boardId=1610760&boardMasterId=1&boardCategoryId=&decorator=
  142. National Health and Medical Research Council (NHMRC), 2011. Australian drinking water guidelines paper 6 national water quality management strategy, National Health and Medical Research Council (NRMMC), National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, Australia.
  143. Ministry of Health, 2017. Consolidation of standards on the actions and health services of the unified health system, Brasilia, Brazil.
  144. Government of Canada, (2024, March 20). Guidelines for Canadian drinking water quality: guideline technical document - cyanobacterial toxins. Retrieved from https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-qualityguideline-technical-document-cyanobacterial-toxins-document.html#1_0_Guideline
  145. Ministry of Health of China, Standardization Administration of China, 2022. National standard of the people's republic of China-standards for drinking water quality (GB 5749-2022), Beijing, China.
  146. French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 2020. Anses opnion on the update of the risk assessment on the presence of cyanobacteria and their toxins in drinking water, recreational water and water intended for professional and recreational fishing activities. Paris, France.
  147. New Zealand Legislation, 2022. Water services (drinking water standards for New Zealand) regulations 2022, Wellington, New Zealand.
  148. Lim, M.H., Tay, H.S.M., Devotta, D.A., Mowe, M.A., Mitrovic, S.M., Risk management of cyanotoxins in Singapore. J. Water Resour. Prot., 12, 512-525 (2020).
  149. Ministry of Health and Consumption, 2003. Health criteria for the quality of water for human consumption. Madrid, Spain.
  150. Republic of Turkey Ministry of Agriculture and Forestry, 2019. Regulation on quality and purification of drinking water supply water. Official gazette number: 30823, Ankara, Turkey.