과제정보
This study was conducted by the Ministry of Trade, Industry and Energy and the Ministry of Industry and Technology in 2024 (Project number: 20011497).
참고문헌
- R. S. K. Valappil, N. Ghasem, and M. Al-Marzouqi, "Current and future trends in polymer membrane-based gas separation technology: A comprehensive review", J. Ind. Eng. Chem., 98, 103-129 (2021). https://doi.org/10.1016/j.jiec.2021.03.030
- P. Pandey and R. S. Chauhan, "Membranes for gas separation", Prog. Polym. Sci., 26, 853-893 (2001). https://doi.org/10.1016/S0079-6700(01)00009-0
- P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638-4663 (2009). https://doi.org/10.1021/ie8019032
- P. Bernardo and G. Clarizia, "30 years of membrane technology for gas separation", Chem. Eng. Trans., 32, 1999-2004 (2013).
- R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002). https://doi.org/10.1021/ie0108088
- L. M. Gandia, G. Arzamedi, and P. M. Dieguez, "Renewable hydrogen technologies: Production, purification, storage, applications and safety", pp. 245-268, Elsevier, Amsterdam, Netherlands (2013).
- J. D. Perry, K. Nagai, and W. J. Koros, "Polymer membranes for hydrogen separations", MRS Bulletin, 31, 745-749 (2006).
- S. Uemiya, "State-of-the-art of supported metal membranes for gas separation", Sep. Purif. Technol., 28, 51-85 (1999). https://doi.org/10.1080/03602549909351644
- G. Bagnato, A. Iulianelli, A. Vita, C. Italiano, M. Lagana, C. Fabiano, C. Rossi, and A. Basile, "Pure hydrogen production from steam reforming of biosources", Int. J. Membr. Sci. Technol., 2, 49 (2015).
- S. Elhenawy, M. Khraisheh, F. AlMomani, and M. Hassan, "Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams", Molecules, 25, 4274 (2020).
- Y. Alqaheem, A. Alomair, M. Vinoba, and A. Perez, "Polymeric gas-separation membranes for petroleum refining", Int. J. Polym. Sci., 2017, 4250927 (2017).
- V. Bondar, B. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci., Part B: Polym. Phys., 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
- S. E. Kentish, C. A. Scholes, and G. W. Stevens, "Carbon dioxide separation through polymeric membrane systems for flue gas applications", Recent Pat. Chem. Eng., 1, 52-66 (2008).
- N. Fazil, H. Mukhtar, D. F. Mohshim, and R. Nasir, "Gas permeation properties of multiwalled carbon nanotubes on polyether block amide (Pebax-1657)/polyethersulfone (PES) blend mixed matrix membrane for CO2/CH4 separation", Solid State Phenom., 307, 258-263 (2020). https://doi.org/10.4028/www.scientific.net/SSP.307.258
- A. Hussain, S. Farrukh, A. Hussain, and M. Ayoub, "Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes", Environ. Technol., 40, 843-854 (2019). https://doi.org/10.1080/09593330.2017.1408696
- L. Huang, Z. Xing, X. Zhuang, J. Wei, Y. Ma, B. Wang, X. Jiang, X. He, L. Deng, and Z. Dai, "Polymeric membranes and their derivatives for H2/CH4 separation: State of the art", Sep. Purif. Technol., 297, 121504 (2022).
- Z. P. Smith, D. F. Sanders, C. P. Ribeiro, R. Guo, B. D. Freeman, D. R. Paul, J. E. McGrath, and S. Swinnea, "Gas sorption and characterization of thermally rearranged polyimides based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)", J. Membr, Sci., 415, 558-567 (2012).
- S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill, and Y. M. Lee, "Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors", Macromolecules, 43, 7657-7667 (2010). https://doi.org/10.1021/ma101549z
- S. Janakiram, M. Ahmadi, Z. Dai, L. Ansaloni, and L. Deng, "Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation: A review", Membranes, 8, 24 (2018).
- T. Yang, G. M. Shi, and T. S. Chung, "Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/ polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures", Adv. Energy Mater., 2, 1358-1367 (2012). https://doi.org/10.1002/aenm.201200200
- C. Regmi, S. Ashtiani, Z. Hrdlicka, and K. Friess, "CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes", Membranes, 11, 862 (2021).
- G. Vereb, P. Kassai, E. Nascimben Santos, G. Arthanareeswaran, C. Hodur, and Z. Laszlo, "Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces", Environ. Sci. Pollut. Res., 27, 22195-22205 (2020). https://doi.org/10.1007/s11356-020-08047-1
- G. Murali, S. R. Abid, M. Amran, R. Fediuk, N. Vatin, and M. Karelina, "Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading", Crystals, 11, 720 (2021).
- H.-H. Tseng, I. A. Kumar, T.-H. Weng, C.-Y. Lu, and M.-Y. Wey, "Preparation and characterization of carbon molecular sieve membranes for gas separation-the effect of incorporated multi-wall carbon nanotubes", Desalination, 240, 40-45 (2009). https://doi.org/10.1016/j.desal.2008.01.048
- M. M. Rajpure, R. B. Mujmule, U. Kim, and H. Kim, "Fabrication of MgO nanorods blended cellulose acetate-based mixed matrix membranes for selective gas separation of H2/CH4, CO2/CH4 and H2/CO2: Effect of loading and pressure", Int. J. Hydrogen Energy, 50, 615-628 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.238
- P. Sherugar, A. M. Antony, N. A. H. M. Nordin, S. A. Patil, and M. Padaki, "Tailoring the CH4/CO2/N2 separation performance of ultrapermeable polymeric composite membranes by altering the concentration of Pd/g-C3N4", Fuel, 361, 130731 (2024).
- R. Spillman, "Economics of gas separation membrane processes", Membrane Separations Technology - Principles and Applications, pp. 589-667, Elsevier, Amsterdam, Netherlands (1995).
- P. Hoffmann, "Tomorrow's energy, revised and expanded edition: Hydrogen, fuel cells, and the prospects for a cleaner planet", MIT press, Cambridge, Massachusetts London, England (2012).
- J. A. Ritter and A. D. Ebner, "State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries", Sep. Sci. Technol., 42, 1123-1193 (2007). https://doi.org/10.1080/01496390701242194
- K. Dalane, Z. Dai, G. Mogseth, M. Hillestad, and L. Deng, "Potential applications of membrane separation for subsea natural gas processing: A review", J. Nat. Gas Sci. Eng., 39, 101-117 (2017). https://doi.org/10.1016/j.jngse.2017.01.023
- Z. Dai and L. Deng, "Membranes for CO2 capture and separation: Progress in research and development for industrial applications", Sep. Purif. Technol., 335, 126022 (2023).
- R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective", Macromolecules, 47, 6999-7013 (2014). https://doi.org/10.1021/ma501488s
- S. Singh, A. M. Varghese, K. S. K. Reddy, G. E. Romanos, and G. N. Karanikolos, "Polysulfone mixed-matrix membranes comprising poly (ethylene glycol)-grafted carbon nanotubes: Mechanical properties and CO2 separation performance", Ind. Eng. Chem. Res., 60, 11289-11308 (2021). https://doi.org/10.1021/acs.iecr.1c02040
- Z. Dai, S. Fabio, N. G. Marino, R. C. Riccardo, and L. Deng, "Field test of a pre-pilot scale hollow fiber facilitated transport membrane for CO2 capture", Int. J. Greenh. Gas. Con., 86, 191-200 (2019). https://doi.org/10.1016/j.ijggc.2019.04.027
- L. S. White, X. Wei, S. Pande, T. Wu, and T. C. Merkel, "Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate", J. Membr. Sci., 496, 48-57 (2015). https://doi.org/10.1016/j.memsci.2015.08.003
- K.-J. Hsu, S. Li, M. Micari, H.-Y. Chi, L. F. Villalobos, S. Huang, L. Zhong, S. Song, X. Duan, and A. Zuttel, "Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture", Nat. Energy, DOI:10.1038/s41560-024-01556-0.
- Y. Han and W. W. Ho, "Polymeric membranes for CO2 separation and capture", J. Membr. Sci., 628, 119244 (2021).
- C. A. Scholes, J. Bacus, G. Q. Chen, W. X. Tao, G. Li, A. Qader, G. W. Stevens, and S. E. Kentish, "Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas", J. Membr. Sci., 389, 470-477 (2012). https://doi.org/10.1016/j.memsci.2011.11.011
- K. H. Kim, K. J. Baik, I. W. Kim, and H. K. Lee, "Optimization of membrane process for methane recovery from biogas", Separ. Sci. Technol., 47, 963-971 (2012). https://doi.org/10.1080/01496395.2011.644878
- M. T. Khalid, T. Anjum, A. L. Khan, F. Rehman, M. Aslam, M. A. Gilani, F. H. Akhtar, M. Lee, I. S. Chang, and M. Yasin, "Task-specific polymeric membranes to achieve high gas-liquid mass transfer", Chemosphere, 313, 137603 (2023).
- V. Vrbova and K. Ciahotny, "Upgrading biogas to biomethane using membrane separation", Energy Fuels, 31, 9393-9401 (2017). https://doi.org/10.1021/acs.energyfuels.7b00120