DOI QR코드

DOI QR Code

탄소중립을 위한 고분자 기체분리막의 기술 동향

Technological Trends in Polymer Gas Separation Membrane for Carbon Neutrality

  • 투고 : 2024.05.15
  • 심사 : 2024.06.13
  • 발행 : 2024.06.30

초록

대부분의 국가들은 온실가스 배출량을 줄이고 기후변화에 적응하기 위한 행동계획인 NDC (National Determined Contribution)를 법률화 했다. NDC 목표 달성을 위해 다양한 기술이 개발되고 있으며, 특히 가스상의 온실가스나 에너지원의 정화를 위해 분리막 수요가 증가하고 있다. 따라서, 본 논문은 다양한 재료 중 실현 가능한 제조 공정과 쉬운 스케일업의 장점을 가지고 있는 고분자 막의 기술 동향을 제공할 것이다.

Many countries have passed laws to achieve Nationally Determined Contribution (NDC) which is a climate action plan to reduce greenhouse gas emissions and adapt to climate impacts. Although there are various technologies to achieve NDC targets, membrane technologies pose dramatical attractions for the purification of gaseous greenhouse gases or energy sources. Therefore, this review will provide the technological trends of polymeric membranes among various materials due to the advantages of the feasible fabrication process and easy scale-up.

키워드

과제정보

This study was conducted by the Ministry of Trade, Industry and Energy and the Ministry of Industry and Technology in 2024 (Project number: 20011497).

참고문헌

  1. R. S. K. Valappil, N. Ghasem, and M. Al-Marzouqi, "Current and future trends in polymer membrane-based gas separation technology: A comprehensive review", J. Ind. Eng. Chem., 98, 103-129 (2021). https://doi.org/10.1016/j.jiec.2021.03.030
  2. P. Pandey and R. S. Chauhan, "Membranes for gas separation", Prog. Polym. Sci., 26, 853-893 (2001). https://doi.org/10.1016/S0079-6700(01)00009-0
  3. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638-4663 (2009). https://doi.org/10.1021/ie8019032
  4. P. Bernardo and G. Clarizia, "30 years of membrane technology for gas separation", Chem. Eng. Trans., 32, 1999-2004 (2013).
  5. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393-1411 (2002). https://doi.org/10.1021/ie0108088
  6. L. M. Gandia, G. Arzamedi, and P. M. Dieguez, "Renewable hydrogen technologies: Production, purification, storage, applications and safety", pp. 245-268, Elsevier, Amsterdam, Netherlands (2013).
  7. J. D. Perry, K. Nagai, and W. J. Koros, "Polymer membranes for hydrogen separations", MRS Bulletin, 31, 745-749 (2006).
  8. S. Uemiya, "State-of-the-art of supported metal membranes for gas separation", Sep. Purif. Technol., 28, 51-85 (1999). https://doi.org/10.1080/03602549909351644
  9. G. Bagnato, A. Iulianelli, A. Vita, C. Italiano, M. Lagana, C. Fabiano, C. Rossi, and A. Basile, "Pure hydrogen production from steam reforming of biosources", Int. J. Membr. Sci. Technol., 2, 49 (2015).
  10. S. Elhenawy, M. Khraisheh, F. AlMomani, and M. Hassan, "Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams", Molecules, 25, 4274 (2020).
  11. Y. Alqaheem, A. Alomair, M. Vinoba, and A. Perez, "Polymeric gas-separation membranes for petroleum refining", Int. J. Polym. Sci., 2017, 4250927 (2017).
  12. V. Bondar, B. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci., Part B: Polym. Phys., 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  13. S. E. Kentish, C. A. Scholes, and G. W. Stevens, "Carbon dioxide separation through polymeric membrane systems for flue gas applications", Recent Pat. Chem. Eng., 1, 52-66 (2008).
  14. N. Fazil, H. Mukhtar, D. F. Mohshim, and R. Nasir, "Gas permeation properties of multiwalled carbon nanotubes on polyether block amide (Pebax-1657)/polyethersulfone (PES) blend mixed matrix membrane for CO2/CH4 separation", Solid State Phenom., 307, 258-263 (2020). https://doi.org/10.4028/www.scientific.net/SSP.307.258
  15. A. Hussain, S. Farrukh, A. Hussain, and M. Ayoub, "Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes", Environ. Technol., 40, 843-854 (2019). https://doi.org/10.1080/09593330.2017.1408696
  16. L. Huang, Z. Xing, X. Zhuang, J. Wei, Y. Ma, B. Wang, X. Jiang, X. He, L. Deng, and Z. Dai, "Polymeric membranes and their derivatives for H2/CH4 separation: State of the art", Sep. Purif. Technol., 297, 121504 (2022).
  17. Z. P. Smith, D. F. Sanders, C. P. Ribeiro, R. Guo, B. D. Freeman, D. R. Paul, J. E. McGrath, and S. Swinnea, "Gas sorption and characterization of thermally rearranged polyimides based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)", J. Membr, Sci., 415, 558-567 (2012).
  18. S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill, and Y. M. Lee, "Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors", Macromolecules, 43, 7657-7667 (2010). https://doi.org/10.1021/ma101549z
  19. S. Janakiram, M. Ahmadi, Z. Dai, L. Ansaloni, and L. Deng, "Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation: A review", Membranes, 8, 24 (2018).
  20. T. Yang, G. M. Shi, and T. S. Chung, "Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/ polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures", Adv. Energy Mater., 2, 1358-1367 (2012). https://doi.org/10.1002/aenm.201200200
  21. C. Regmi, S. Ashtiani, Z. Hrdlicka, and K. Friess, "CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@CNT hybrid mixed matrix membranes", Membranes, 11, 862 (2021).
  22. G. Vereb, P. Kassai, E. Nascimben Santos, G. Arthanareeswaran, C. Hodur, and Z. Laszlo, "Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces", Environ. Sci. Pollut. Res., 27, 22195-22205 (2020). https://doi.org/10.1007/s11356-020-08047-1
  23. G. Murali, S. R. Abid, M. Amran, R. Fediuk, N. Vatin, and M. Karelina, "Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading", Crystals, 11, 720 (2021).
  24. H.-H. Tseng, I. A. Kumar, T.-H. Weng, C.-Y. Lu, and M.-Y. Wey, "Preparation and characterization of carbon molecular sieve membranes for gas separation-the effect of incorporated multi-wall carbon nanotubes", Desalination, 240, 40-45 (2009). https://doi.org/10.1016/j.desal.2008.01.048
  25. M. M. Rajpure, R. B. Mujmule, U. Kim, and H. Kim, "Fabrication of MgO nanorods blended cellulose acetate-based mixed matrix membranes for selective gas separation of H2/CH4, CO2/CH4 and H2/CO2: Effect of loading and pressure", Int. J. Hydrogen Energy, 50, 615-628 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.238
  26. P. Sherugar, A. M. Antony, N. A. H. M. Nordin, S. A. Patil, and M. Padaki, "Tailoring the CH4/CO2/N2 separation performance of ultrapermeable polymeric composite membranes by altering the concentration of Pd/g-C3N4", Fuel, 361, 130731 (2024).
  27. R. Spillman, "Economics of gas separation membrane processes", Membrane Separations Technology - Principles and Applications, pp. 589-667, Elsevier, Amsterdam, Netherlands (1995).
  28. P. Hoffmann, "Tomorrow's energy, revised and expanded edition: Hydrogen, fuel cells, and the prospects for a cleaner planet", MIT press, Cambridge, Massachusetts London, England (2012).
  29. J. A. Ritter and A. D. Ebner, "State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries", Sep. Sci. Technol., 42, 1123-1193 (2007). https://doi.org/10.1080/01496390701242194
  30. K. Dalane, Z. Dai, G. Mogseth, M. Hillestad, and L. Deng, "Potential applications of membrane separation for subsea natural gas processing: A review", J. Nat. Gas Sci. Eng., 39, 101-117 (2017). https://doi.org/10.1016/j.jngse.2017.01.023
  31. Z. Dai and L. Deng, "Membranes for CO2 capture and separation: Progress in research and development for industrial applications", Sep. Purif. Technol., 335, 126022 (2023).
  32. R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective", Macromolecules, 47, 6999-7013 (2014). https://doi.org/10.1021/ma501488s
  33. S. Singh, A. M. Varghese, K. S. K. Reddy, G. E. Romanos, and G. N. Karanikolos, "Polysulfone mixed-matrix membranes comprising poly (ethylene glycol)-grafted carbon nanotubes: Mechanical properties and CO2 separation performance", Ind. Eng. Chem. Res., 60, 11289-11308 (2021). https://doi.org/10.1021/acs.iecr.1c02040
  34. Z. Dai, S. Fabio, N. G. Marino, R. C. Riccardo, and L. Deng, "Field test of a pre-pilot scale hollow fiber facilitated transport membrane for CO2 capture", Int. J. Greenh. Gas. Con., 86, 191-200 (2019). https://doi.org/10.1016/j.ijggc.2019.04.027
  35. L. S. White, X. Wei, S. Pande, T. Wu, and T. C. Merkel, "Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate", J. Membr. Sci., 496, 48-57 (2015). https://doi.org/10.1016/j.memsci.2015.08.003
  36. K.-J. Hsu, S. Li, M. Micari, H.-Y. Chi, L. F. Villalobos, S. Huang, L. Zhong, S. Song, X. Duan, and A. Zuttel, "Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture", Nat. Energy, DOI:10.1038/s41560-024-01556-0.
  37. Y. Han and W. W. Ho, "Polymeric membranes for CO2 separation and capture", J. Membr. Sci., 628, 119244 (2021).
  38. C. A. Scholes, J. Bacus, G. Q. Chen, W. X. Tao, G. Li, A. Qader, G. W. Stevens, and S. E. Kentish, "Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas", J. Membr. Sci., 389, 470-477 (2012). https://doi.org/10.1016/j.memsci.2011.11.011
  39. K. H. Kim, K. J. Baik, I. W. Kim, and H. K. Lee, "Optimization of membrane process for methane recovery from biogas", Separ. Sci. Technol., 47, 963-971 (2012). https://doi.org/10.1080/01496395.2011.644878
  40. M. T. Khalid, T. Anjum, A. L. Khan, F. Rehman, M. Aslam, M. A. Gilani, F. H. Akhtar, M. Lee, I. S. Chang, and M. Yasin, "Task-specific polymeric membranes to achieve high gas-liquid mass transfer", Chemosphere, 313, 137603 (2023).
  41. V. Vrbova and K. Ciahotny, "Upgrading biogas to biomethane using membrane separation", Energy Fuels, 31, 9393-9401 (2017). https://doi.org/10.1021/acs.energyfuels.7b00120