DOI QR코드

DOI QR Code

Analysis of Ecological Connectivity of Forest Habitats Using Spatial Morphological Characteristics and Roadkill Data

공간형태학적 특성 및 로드킬 자료를 활용한 산림서식지의 생태적 연결성 분석

  • Hyunjin Seo (Ecological Restoration Team, National Institute of Ecology) ;
  • Chulhyun Choi (Climate Change and Carbon Research Team, National Institute of Ecology) ;
  • Seungwon Lee (Ecological Restoration Team, National Institute of Ecology) ;
  • Jinhyo Kim (School of Forest Science and Landscape Architecture, Kyungpook National University)
  • 서현진 (국립생태원 복원생태팀) ;
  • 최철현 (국립생태원 기후탄소연구팀) ;
  • 이승원 (국립생태원 복원생태팀) ;
  • 김진효 (경북대학교 산림과학조경학부 조경학전공)
  • Received : 2023.11.30
  • Accepted : 2024.05.25
  • Published : 2024.06.30

Abstract

This study examined the spatial morphological patterns of forest habitats and the characteristics of roadkill occurrences in the forests of Mungyeong, Yecheon, Yeongju, Andong, and Bonghwa in Gyeongsangbukdo. It involved building a resistance map between habitats and analyzing connectivity based on the least-cost distance. The analysis of the distance between the forest habitat Cores derived from MSPA and roadkill points showed that roadkill occurrences were concentrated approximately 74.11 m away from the Cores, with most roadkills happening within 360m from the habitats. The connectivity analysis between core habitats larger than 1 km2 revealed 141 core habitats and 242 least-cost paths between them. The corridor distance value was found to be highest in Mungyeong city, indicating an urgent need for strategies to enhance habitat connectivity there. This research is expected to serve as foundational data for developing strategies to enhance ecosystem connectivity and restore habitats, by analyzing ecosystem connectivity and roadkill issues due to habitat fragmentation.

이 연구는 경상북도 문경, 예천, 영주, 안동, 봉화 일대의 산림서식지 공간형태학적 패턴과 로드킬 발생 간의 특성을 확인하고, 서식지 간의 저항지도를 구축하여 최소비용거리 기반 연결성을 분석하였다. MSPA에서 도출된 산림서식지 Core와 로드킬 발생지점 간의 거리를 분석한 결과, Core로부터 약 74.11 m 떨어진 지역에서 로드킬 발생이 집중되었고, 대부분의 로드킬이 서식지로부터 360 m 이내에서 발생하는 것으로 확인되었다. 1 km2 이상의 Core인 핵심서식지 간의 연결성 분석 결과, 141개의 핵심서식지와 서식지 간의 최소거리 경로(path) 242개가 도출되었고, 통로거리(corridor distance) 값은 문경시가 가장 높게 분석되어 대상지 중 연결성이 가장 낮은 것으로 나타났다. 본 연구는 서식지 단절에 따른 생태계 연결성과 로드킬 문제를 분석하여, 생태통로 설치 등 생태계의 연결성 강화 및 서식지 복원 전략 개발을 위한 기초자료로 사용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행된 연구임을 밝힙니다(NIE-고유연구-2024-05).

References

  1. Castilho, C.S., V.C.S. Hackbart, V.R. Pivello and R.F. dos Santos. 2015. Evaluating Landscape Connectivity for Puma con-color and Panthera onca Among Atlantic Forest Protected Areas. Environmental Management 55: 1377-1389. https://doi.org/10.1007/s00267-015-0463-7
  2. Dutta, T., S. Sharma, B.H. McRae, P.S. Roy and R. DeFries. 2015. Connecting the dots: mapping habitat connectivity for tigers in central India. Regional Environmental Change 16: 53-67. Springer Berlin Heidelberg. https://doi.org/10.1007/s10113-015-0877-z
  3. Estreguil, C. and G. Caudullo. 2010. Harmonized measurements of spatial pattern and connectivity: application to forest habitats in the EBONE European project Forest landscape and global change-new frontiers in management. Proceedings of the IUFRO Landscape Ecology Working Group International Conferences.
  4. Jung, H.J. 2014. A Study on the Improvement of Landscape Pattern Analysis Techniques by the Functional Complementarity of FRAGSTATS and GUIDOS Models. Master's Thesis, Seoul National University.
  5. Kim, J.H., O.S. Kwon and J.H. Ra. 2021. Urban Type Classification and Characteristic Analysis through Time-Series Environmental Changes for Land Use Management for 31 Satellite Cities around Seoul, South Korea. Land 10: 799.
  6. Li, G., C. Fang, Y. Li, Z. Wang, S. Sun, S. He, W. Qi, C. Bao, H. Ma, Y. Fan, Y. Feng and X. Liu. 2022. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications 13(1): 1628.
  7. Liu, Z., C. He and J. Wu. 2016. The relationship between habitat loss and fragmentation during urbanization: an empirical evaluation from 16 world cities. PLoS One 11(4): e0154613.
  8. MaRae, B.H. and D.M. Kavanagh. 2017. Linkage pathways tool of the linkage mapper toolbox-user guide.
  9. ME (Ministry of Environment). 2023. National Greenhouse Gas Inventory Report. Greenhouse Gas Comprehensive Information Center, Ministry of Environment.
  10. NIE (National Institute of Ecology). 2018. Fundamental research on the conservation of national ecological network.
  11. NIE (National Institute of Ecology). 2019. Fundamental research on the conservation of national ecological network.
  12. NIER (National Institute of Environmental Research). 2009. Study on the optimal management for sustainable use of Korean water deer population.
  13. Saura, S. and L. Pascual-Hortal. 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning 83: 91-103. https://doi.org/10.1016/j.landurbplan.2007.03.005
  14. Shi, X. and M. Qin. 2018. Research on the optimization regional green infrastructure network. Sustainability 10(12): 4649.
  15. Simpson, N.O., K.M. Stewart, D. Schroeder, M. Cox, K. Huebner and T. Wasley. 2016. Overpass and underpass: effectiveness of crossing structures for Migratory Ungulates. The Journal of Wildlife Management 80(8): 1370-1378.
  16. Song, E.G., H.J. Seo, K.M. Kim, D.G. Woo, T.J. Park and T.Y. Choi. 2019. Analysis of roadkill hotspot according to the spatial clustering methods. Korean Society of Environmental Impact Assessment 28(6): 580-591.
  17. Vogt, P., K.H. Ritters, C. Estreguil, J. Kozak, T.G. Wade and J.D. Wickham. 2007. Mapping spatial patterns with morphological image processing. Landscape Ecology 22: 171-177. https://doi.org/10.1007/s10980-006-9013-2
  18. Wang, J. 2014. Effectiveness of Wildlife Crossing Structures on Providing Habitat Connectivity for Wild Animals. Master's Theses in University of British Columbia.
  19. Yoon, E.J., E.Y. Kim, J.Y. Kim and D.G. Lee. 2019. Basic Connectivity Assessment of Circuit Theory for the Proposal of Ecological Axes. Environmental Impact Assessment 28(3): 275-286.