DOI QR코드

DOI QR Code

Molecular identification of fruit bats, natural host of Nipah virus in Bangladesh, based on DNA barcode

  • Md. Maharub Hossain Fahim (Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University) ;
  • Walid Hassan (Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University) ;
  • Afia Afsin (Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University) ;
  • Md. Mahfuzur Rahman (International Centre for Diarrhoeal Disease Research) ;
  • Md. Tanvir Rahman (Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University) ;
  • Sang Jin Lim (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Yeonsu Oh (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Yung Chul Park (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Hossain Md. Faruquee (Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University) ;
  • Md. Mafizur Rahman (Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University)
  • 투고 : 2024.01.03
  • 심사 : 2024.03.04
  • 발행 : 2024.06.30

초록

Background: Fruit bats are natural carriers of Nipah virus (NiV). The primary objective of this study is to identify potential reservoir species in a selected geographic regions. It is necessary to determine an accurate species identification of the associated reservoir bat species distributed in a specific region. Results: In this study, we collected 20 different bat specimens from the NiV-prone area of the Kushtia district. Among these, 14 were tissue samples (BT-1-14) and six were fecal samples (BF-1-6). We used the mitochondrial gene cytochrome b, one of the most abundant and frequently used genetic markers, for polymerase chain reaction amplification and sequencing. Out of the 20 samples, 12 tissue samples and 2 fecal samples were successfully amplified and sequenced. However, two tissue samples and four fecal samples yielded chimeric sequences, rendering them unsuitable for annotation. The sequences of the successfully amplified samples were compared to those deposited in the National Center for Biotechnology Information database using basic local alignment search tool to identify the bat specimen collected. The study identified six different bat species using both morphological and genetic data, which may carriers of the NiV. Conclusions: Our results suggest that additional research should be conducted to gather more information on fruit bats from different localities across the country. The study contributes to the establishment of appropriate measures for NiV carrying disease control and management.

키워드

과제정보

We acknowledge the permission authority. We thank all of the studneds at Islamic University, Kushtia and Bangladesh Agricultural University, Mymensingh, for sample collection.

참고문헌

  1. Aguiar JJM, Santos JC, Urso-Guimaraes MV. On the use of photography in science and taxonomy: how images can provide a basis for their own authentication. Bionomina. 2017;12(1):44-7. https://doi.org/10.11646/BIONOMINA.12.1.4.
  2. Ahmed SK, Husain KZ. Bats of Bangladesh. J Asiat Soc Bangladesh Sci. 1982;8:89-99.
  3. Almeida FC, Giannini NP, Simmons NB, Helgen KM. Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol. 2014;77:83-95. https://doi.org/10.1016/j.ympev.2014.03.009.
  4. Arnaout Y, Djelouadji Z, Robardet E, Cappelle J, Cliquet F, Touzalin F, et al. Genetic identification of bat species for pathogen surveillance across France. PLoS One. 2022;17(1):e0261344. https://doi.org/10.1371/journal.pone.0261344.
  5. Baird AB, Braun JK, Engstrom MD, Holbert AC, Huerta MG, Lim BK, et al. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One. 2017;12(10): e0186085. https://doi.org/10.1371/journal.pone.0186085.
  6. Bangladesh: Additional Nipah virus death reported in 2023. 2023. https://outbreaknewstoday.com/bangladesh-additional-nipah-virus-death-reported-in-2023-2023/. Accessed 23 Jan 2023.
  7. Camacho MA, Cadar D, Horvath B, Merino-Viteri A, Murienne J. Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification. Zool J Linn Soc. 2022;196(4):1591-607. https://doi.org/10.1093/zoolinnean/zlac055.
  8. Caraballo DA, Montani ME, Martinez LM, Antoniazzi LR, Sambrana TC, Fernandez C, et al. Heterogeneous taxonomic resolution of cytochrome b gene identification of bats from Argentina: implications for field studies. PLoS One. 2020;15(12):e0244750. https://doi.org/10.1371/journal.pone.0244750.
  9. Chan AAQ, Aziz SA, Clare EL, Coleman JL. Diet, ecological role and potential ecosystem services of the fruit bat, Cynopterus brachyotis, in a tropical city. Urban Ecosyst. 2021;24(2):251-63. https://doi.org/10.1007/s11252-020-01034-x.
  10. Chan LM, Goodman SM, Nowak MD, Weisrock DW, Yoder AD. Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands. PLoS Curr. 2011;3:RRN1226. https://doi.org/10.1371/currents.RRN1226.
  11. Dimkic I, Fira D, Janakiev T, Kabic J, Stupar M, Nenadic M, et al. The microbiome of bat guano: for what is this knowledge important? Appl Microbiol Biotechnol. 2021;105(4):1407-19. https://doi.org/10.1007/s00253-021-11143-y.
  12. Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Khan SA, Ross N, et al. Nipah virus ecology and infection dynamics in its bat reservoir, Pteropus medius, in Bangladesh. Int J Infect Dis. 2016;53 Suppl:20-1. https://doi.org/10.1016/j.ijid.2016.11.056.
  13. Fenton MB. Bats. Rev. ed. New York: Checkmark Books; 2001.
  14. Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, Guillen-Servent A, et al. The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One. 2010;5(9):e12575. https://doi.org/10.1371/journal.pone.0012575.
  15. Gager Y, Tarland E, Lieckfeldt D, Menage M, Botero-Castro F, Rossiter SJ, et al. The value of molecular vs. morphometric and acoustic information for species identification using sympatric molossid bats. PLoS One. 2016;11(3):e0150780. https://doi.org/10.1371/journal.pone.0150780.
  16. Gyawali N, Taylor-Robinson AW, Bradbury RS, Huggins DW, Hugo LE, Lowry K, et al. Identification of the source of blood meals in mosquitoes collected from north-eastern Australia. Parasit Vectors. 2019;12(1):198. https://doi.org/10.1186/s13071-019-3455-2.
  17. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011;85(5):946-51. https://doi.org/10.4269/ajtmh.2011.10-0567.
  18. Hassan MM, Kalam MA, Alam M, Shano S, Faruq AA, Hossain MS, et al. Understanding the community perceptions and knowledge of bats and transmission of Nipah virus in Bangladesh. Animals (Basel). 2020;10(10):1814. https://doi.org/10.3390/ani10101814.
  19. Hernandez-Davila A, Vargas JA, Martinez-Mendez N, Lim BK, Engstrom MD, Ortega J. DNA barcoding and genetic diversity of phyllostomid bats from the Yucatan Peninsula with comparisons to Central America. Mol Ecol Resour. 2012;12(4):590-7. https://doi.org/10.1111/j.1755-0998.2012.03125.x.
  20. Homaira N, Rahman M, Hossain MJ, Nahar N, Khan R, Rahman M, et al. Cluster of Nipah virus infection, Kushtia District, Bangladesh, 2007. PLoS One. 2010;5(10):e13570. https://doi.org/10.1371/journal.pone.0013570.
  21. Igado O, Joannis J. Skull shape variations in the Eidolon helvum (African fruit bat) based on geographical location. Niger J Physiol Sci. 2022;37(1):101-11. https://doi.org/10.54548/njps.v37i1.13.
  22. Islam A, Hossain ME, Rostal MK, Ferdous J, Islam A, Hasan R, et al. Epidemiology and molecular characterization of rotavirus A in fruit bats in Bangladesh. Ecohealth. 2020;17(3):398-405. https://doi.org/10.1007/s10393-020-01488-7.
  23. Jacobs DS, Eick GN, Schoeman MC, Matthee CA. Cryptic species in an insectivorous bat, Scotophilus dinganii. J Mammal. 2006;87(1):161-70. https://doi.org/10.1644/04-MAMM-A-132R2.1.
  24. Joshi J, Shah Y, Pandey K, Ojha RP, Joshi CR, Bhatt LR, et al. Possible high risk of transmission of the Nipah virus in South and South East Asia: a review. Trop Med Health. 2023;51(1):44. https://doi.org/10.1186/s41182-023-00535-7.
  25. Jung K, Threlfall CG. Urbanisation and its effects on bats-a global meta-analysis. In: Voigt C, Kingston T, editors. Bats in the anthropocene: conservation of bats in a changing world. Cham: Springer; 2016. p. 13-33.
  26. Kasso M, Balakrishnan M. Ecological and economic importance of bats (Order Chiroptera). ISRN Biodivers. 2013;2013:187415. https://doi.org/10.1155/2013/187415.
  27. Khan MMH. Photographic guide to the wildlife of Bangladesh. Dhaka: Arannyak Foundation; 2018.
  28. Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol. 2013;24(3):398-408. https:// doi.org/10.1007/s13337-013-0171-y.
  29. Kumar J, Kumar M, Gupta S, Ahmed V, Bhambi M, Pandey R, et al. An improved methodology to overcome key issues in human fecal metagenomic DNA extraction. Genomics Proteomics Bioinformatics. 2016;14(6):371-8. https://doi.org/10.1016/j.gpb.2016.06.002.
  30. Kunz TH, Jones DP. Pteropus vampyrus. Mamm Species. 2000;2000(642):1-6. https://doi.org/10.1644/1545-1410(2000)642<0001:PV>2.0.CO;2.
  31. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438(7068):575-6. https://doi.org/10.1038/438575a.
  32. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293-6. https://doi.org/10.1093/nar/gkab301.
  33. Lim BK, Engstrom MD, Lee TE, Patton JC, Bickham JW. Molecular differentiation of large species of fruit-eating bats (Artibeus) and phylogenetic relationships based on the cytochrome b gene. Acta Chiropt. 2004;6(1):1-12. https://doi.org/10.3161/001.006.0101.
  34. Liu A, Zhang Z, Crabbe MJC, Das LC. Multifractal features and dynamical thresholds of temperature extremes in Bangladesh. Fractal Fract. 2023;7(7):540. https://doi.org/10.3390/fractalfract7070540.
  35. Mayer F, Dietz C, Kiefer A. Molecular species identification boosts bat diversity. Front Zool. 2007;4:4. https://doi.org/10.1186/1742-9994-4-4.
  36. Neaves LE, Danks M, Lott MJ, Dennison S, Frankham GJ, King A, et al. Unmasking the complexity of species identification in Australasian flying-foxes. PLoS One. 2018;13(4):e0194908. https://doi.org/10.1371/journal.pone.0194908.
  37. Nesi N, Nakoune E, Cruaud C, Hassanin A. DNA barcoding of African fruit bats (Mammalia, Pteropodidae). The mitochondrial genome does not provide a reliable discrimination between Epomophorus gambianus and Micropteropus pusillus. C R Biol. 2011;334(7):544-54. https://doi.org/10.1016/j.crvi.2011.05.003.
  38. O'Brien J, Mariani C, Olson L, Russell AL, Say L, Yoder AD, et al. Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Mol Phylogenet Evol. 2009;51(2):294-303. https://doi.org/10.1016/j.ympev.2009.02.010.
  39. Olival KJ, Latinne A, Islam A, Epstein JH, Hersch R, Engstrand RC, et al. Population genetics of fruit bat reservoir informs the dynamics, distribution and diversity of Nipah virus. Mol Ecol. 2020;29(5):970-85. https://doi.org/10.1111/mec.15288.
  40. Philbey AW, Kirkland PD, Ross AD, Field HE, Srivastava M, Davis RJ, et al. Infection with Menangle virus in flying foxes (Pteropus spp.) in Australia. Aust Vet J. 2008;86(11):449-54. https://doi.org/10.1111/j.1751-0813.2008.00361.x.
  41. Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST, Gonzalez JP, et al. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis. 2009;9:159. https://doi.org/10.1186/1471-2334-9-159.
  42. Pulvers JN, Colgan DJ. Molecular phylogeography of the fruit bat genus Melonycteris in northern Melanesia. J Biogeogr. 2007;34(4):713-23. https://doi.org/10.1111/j.1365-2699.2006.01634.x.
  43. Rahman MM, Lim SJ, Park YC. Molecular identification of Bacillus isolated from Korean water deer (Hydropotes inermis argyropus) and striped field mouse (Apodemus agrarius) feces by using an SNPbased 16S ribosomal marker. Animals (Basel). 2022;12(8):979. https://doi.org/10.3390/ani12080979.
  44. Rahman MZ, Islam MM, Hossain ME, Rahman MM, Islam A, Siddika A, et al. Genetic diversity of Nipah virus in Bangladesh. Int J Infect Dis. 2021;102:144-51. https://doi.org/10.1016/j.ijid.2020.10.041.
  45. Rogers DC, Ahyong ST, Boyko CB, D'Acoz CD. Images are not and should not ever be type specimens: a rebuttal to Garraffoni & Freitas. Zootaxa. 2017;4269(4):455-9. https://doi.org/10.11646/zootaxa.4269.4.3.
  46. Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garroway CJ. Genetic diversity and IUCN Red List status. Conserv Biol. 2023;37(4):e14064. https://doi.org/10.1111/cobi.14064.
  47. Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: a review. Rev Med Virol. 2019;29(1):e2010. https://doi.org/10.1002/rmv.2010.
  48. Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, et al. Nipah virus-another threat from the world of zoonotic viruses. Front Microbiol. 2022;12:811157. https://doi.org/10.3389/fmicb.2021.811157.
  49. Srinivasulu C, Srinivasulu B. Greater short-nosed fruit bat (Cynopterus sphinx) foraging and damage in vineyards in India. Acta Chiropt. 2002;4(2):167-71. https://doi.org/10.3161/001.004.0205.
  50. Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol Phylogenet Evol. 2010;54(1):1-9. https://doi.org/10.1016/j.ympev.2009.09.021.
  51. Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, Kemp A, et al. Studies of reservoir hosts for Marburg virus. Emerg Infect Dis. 2007;13(12):1847-51. https://doi.org/10.3201/eid1312.071115.
  52. Ul Hasan MA, Kingston T. Bats of Bangladesh-a systematic review of the diversity and distribution with recommendations for future research. Diversity. 2022;14(12):1042. https://doi.org/10.3390/d14121042.
  53. Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerg Infect Dis. 2005;11(12):1949-51. https://doi.org/10.3201/eid1112.050613.
  54. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis. 2001;7(3):439-41. https://doi.org/10.3201/eid0703.010312.
  55. Zhang G, Geng D, Guo Q, Liu W, Li S, Gao W, et al. Genomic landscape of mitochondrial DNA insertions in 23 bat genomes: characteristics, loci, phylogeny, and polymorphism. Integr Zool. 2022;17(5):890-903. https://doi.org/10.1111/1749-4877.12582.