DOI QR코드

DOI QR Code

고등학교 수학 교과서의 공학 도구 활용 현황 분석

An analysis of the use of technology tools in high school mathematics textbooks based

  • 투고 : 2024.05.24
  • 심사 : 2024.06.24
  • 발행 : 2024.06.30

초록

인공지능 디지털 교과서 도입에 따라 수학 교육에서 공학 도구의 활용에 대한 관심이 높아지고 있다. 공학 도구는 수학적 개념을 시각화하고, 실험과 탐구를 통해 수학적 원리를 발견할 수 있는 장점이 있다. 이미 우리나라 2015 개정 수학과 교육과정에서도 공학 도구의 활용을 언급하고 있으며, 이에 따라 수학 교과서에는 다양한 공학 도구를 활용한 교수·학습 활동이 제시되고 있다. 그러나 고등학교 교과서에 제시된 공학 도구의 유형과 활용 방식에 대한 체계적인 분석은 아직 부족한 실정이다. 이에 본 연구에서는 2015 개정 교육과정에 따른 고등학교 수학 교과서에 제시된 공학 도구의 활용 현황을 분석하였다. 이를 위해 수학 교과서에 제시된 공학 도구의 유형을 범주화하고, 각 범주별 활용 비율을 조사하였다. 또한 교과목별, 내용 영역별로 공학 도구의 활용 양상을 분석하고, 교수·학습 활동 형태에 따른 공학 도구의 활용 비율을 살펴보았다. 연구 결과, 공학 도구는 교과목과 내용 영역에 따라 다양한 유형과 비율로 활용되고 있었다. 특히, 기호-조작 그래프 작성 소프트웨어 범주의 공학 도구가 전체 활용 사례의 58%를 차지하여 가장 높은 비중을 나타냈다. 교과목별로는 해석 영역을 다루는 과목에서 기호-조작 그래프 작성 소프트웨어의 활용이 두드러졌으며, 기하 영역에서는 동적 기하 소프트웨어의 활용이 상대적으로 높게 나타났다. 교수·학습 활동 형태 측면에서는 보조도구형(49%)과 의도된 탐구유도형(37%)의 활용 비율이 높았다. 본 연구의 결과는 수학 교과서에서 공학 도구가 다양한 역할을 하고 있음을 보여주며, 향후 공학 도구를 활용한 수학 교수·학습 방법을 개선하는 데 유용한 시사점을 제공할 수 있을 것이다.

With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

키워드

과제정보

이 논문은 2024학년도 홍익대학교 학술연구진흥비에 의하여 지원되었음

참고문헌

  1. Ministry of Education. (2020). Mathematics curriculum. Proclamation of the Ministry of Education #2020-236[Annex 8]. Author. 
  2. Ministry of Education (2022). Mathematics curriculum. Proclamation of the Ministry of Education #2022-33[Annex 8]. Author. 
  3. Ministry of Education. (2023). Measures to enhance public education competitiveness for supporting all students' growth. A press release (May 24. 2020). 
  4. Ministry of Education. (2024). Support plan for strengthening education innovation capacity based on digital technology. A press release (May 24. 2020).
  5. Kim, M. H., SON, H. C. (2013) The analysis on utilization trend of the technology in secondary mathematics textbooks based on the 6th, 7th and 2007 revised curriculum in Korea. School Mathematics, 15(4), 975-994. 
  6. Kim, E. H., Kim, R. Y. (2020). Interpretation and application of information processing competency as mathematical competency: A case of middle school mathematics textbooks under the 2015 revised curriculum. The Mathematical Education, 59(4), 389-403. 
  7. Kim, E. H., Kim, R. Y. (2021). Computational thinking in the tasks related information-processing in middle school mathematics textbooks. Journal of Research in Curriculum Instruction, 25(6), 539-552. http://dx.doi.org/10.24231/rici.2021.25.6.539 
  8. Park, M. H., Joe, M. S., (2021). An analytic comparison on using technology in korean and singaporean middle school mathematics textbooks. The Journal of Learner-Centered Curriculum and Instruction, 21(1), 1601-1624.  https://doi.org/10.22251/jlcci.2021.21.1.1601
  9. Lee, K. W., & Kwon, O. N. (2022). A comparative analysis of economic terms & function notations and function graphs in high school 〈Mathematics for Economics〉, 〈Economics〉 textbooks. Communications of Mathematical Education, 36(4), 559-587. https://doi.org/10.7468/JKSMEE.2022.36.4.559
  10. Lee, Y. M., Han, C. L., & Lim, Y. W. (2023). Analysis of artificial intelligence mathematics textbooks: Vectors and matrices. Communications of Mathematical Education, 37(3), 443-465.  https://doi.org/10.7468/JKSMEE.2023.37.3.443
  11. Rim, H., Shin, D., Park, J. H., Cho, J., Lee, J., Han, H., Shin, B. (2024). Research on development of technological tool utilization materials according to the 2022 revised mathematics curriculum. Journal of the Korean School Mathematics Society, 27(1), 43-69. 
  12. Han, I. K. (2022). An analysis of differentiated teaching materials in the Russian mathematics textbooks. Communications of Mathematical Education, 36(1), 139-170.  https://doi.org/10.7468/JKSMEE.2022.36.1.139
  13. Heo, N. G., Lew, H. C. (2015). Development and application of action based mathematics digital textbook. Journal of Educational Research in Mathematics, 25(2), 241-261.
  14. Dunham, P. H., & Dick, T. P. (1994). Research on graphing calculators. The Mathematics Teacher, 87(6), 440-445. https://doi.org/10.5951/MT.87.6.0440
  15. Hegedus, S. J., & Moreno-Armella, L. (2009). Intersecting representation and communication infrastructures. ZDM, 41, 399-412. https://doi.org/10.1007/s11858-009-0191-7
  16. Heid, M. K., & Blume, G. W. (Eds.). (2008). Research on technology in the learning and teaching of mathematics: Vol. 1, research syntheses. Information Age Publishing, Inc. & National Council of Teachers of Mathematics.
  17. Beatty, R. & Geiger, V. (2010). Technology, communication and collaboration: Re-think communities of inquiry, learning and practice. In C. Hoyles, & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain (pp. 251-284). Springer.
  18. Jones, K. (2000). Providing a foundation for deductive reasoning: Students' interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55-85. https://doi.org/10.1023/A:1012789201736
  19. Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169-1207). Information Age Publishing.