
INTRODUCTION

The prolonged use of opioid medications can lead to 
tolerance, ultimately reducing the analgesic effect and 
limiting its clinical application [1]. Therefore, a combina-

tion therapy that uses different analgesics can be a viable 
alternative for pain management. One typical instance is 
the co-administration of non-steroidal anti-inflammatory 
drugs (NSAIDs) with opioid agonists for the treatment of 
severe and persistent pain [2].

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © The Korean Pain Society

Korean J Pain 2024;37(3):211-217
https://doi.org/10.3344/kjp.24066

pISSN 2005-9159, eISSN 2093-0569

Received February 20, 2024; Revised April 6, 2024; Accepted April 7, 2024

Handling Editor: Sang Hun Kim

Correspondence: Masoumeh Gholami
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
Tel: +98-86-33838607, Fax: +98-86-31473521, E-mail: ma.gholami@arakmu.ac.ir

Experimental Research Article

Beneficial effect of metformin on tolerance to 
analgesic effects of sodium salicylate in male rats
Elham Akbari1,2, Dawood Hossaini1,2, Farimah Beheshti1, Mahdi Khorsand Ghaffari3, Nastran Roshd Rashidi3, 
and Masoumeh Gholami3,1

1Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran 
2Department of Biology and Microbiology, School of Medical Laboratory Technology, Khatam Al-Nabieen University, 
Kabul, Afghanistan 
3Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran

Background: Tolerance to the analgesic effects of opioids and non-steroidal anti-inflammatory drugs (NSAIDs) is 
a major concern for relieving pain. Thus, it is highly valuable to find new pharmacological strategies for prolonged 
therapeutic procedures. Biguanide-type drugs such as metformin (MET) are effective for neuroprotection and can 
be beneficial for addressing opioid tolerance in the treatment of chronic pain. It has been proposed that analgesic 
tolerance to NSAIDs is mediated by the endogenous opioid system. According to the cross-tolerance between 
NSAIDs, especially sodium salicylate (SS), and opiates, especially morphine, the objective of this study was to 
investigate whether MET administration can reduce tolerance to the anti-nociceptive effects of SS.
Methods: Fifty-six male Wistar rats were used in this research (weight 200–250 g). For induction of tolerance, SS 
(300 mg/kg) was injected intraperitoneally for 7 days. During the examination period, animals received MET at 
doses of 50, 75, or 100 mg/kg for 7 days to evaluate the development of tolerance to the analgesic effect of SS. 
The hot plate test was used to evaluate the drugs' anti-nociceptive properties.
Results: Salicylate injection significantly increased hot plate latency as compared to the control group, but the total 
analgesic effect of co-treatment with SS + Met50 was stronger than the SS group. Furthermore, the effect of this 
combination undergoes less analgesic tolerance over time.
Conclusions: It can be concluded that MET can reduce the analgesic tolerance that is induced by repeated 
intraperitoneal injections of SS in Wister rats.

Keywords: Analgesic Effect; Anti-Inflammatory Agents, Non-Steroidal; Drug Tolerance; Metformin; Nociception Tests; 
Pain; Rats; Sodium Salicylate.
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Studies have shown that inflammatory mediators like 
bradykinin, prostaglandins, tumor necrosis factor-α 
(TNF-α), and interleukin-1β induce pain and increase 
neuronal sensitivity [3]. Thus, an anti-inflammatory 
therapeutic strategy has the potential to improve pain 
symptoms. For example, acetaminophen and L-carno-
sine were found to alleviate neuropathic pain through the 
nuclear factor kappa B (NF-κB) pathway and antioxidant 
properties in a model of chronic constriction injury [4]. 
It's important to mention that the development of toler-
ance to analgesic effects is not limited to opioids. Non-
opioid painkillers can also lead to tolerance, either in-
dividually or through cross-tolerance with opioids [5,6]. 
For instance, chronic use of NSAIDs such as lornoxicam, 
sodium salicylate (SS), ketorolac, diclofenac sodium, and 
dipyrone is associated with a gradual decrease in the an-
algesic effects [7–10]. SS, a metabolite of aspirin, is an ef-
fective treatment for inflammation-related illnesses. The 
pharmacological effects of salicylate include inhibiting 
cyclooxygenases and the NF-κB signaling pathway. These 
actions contribute to the anti-inflammatory and analgesic 
properties associated with salicylate [11]. To treat mod-
erate to severe pain, this medication is frequently used 
either by itself or in conjunction with opioids. Neverthe-
less, long-term usage of these can lead to adverse effects 
such as tolerance to their analgesic effects. Biguanide-
class drugs such as metformin (MET) are effective as a 
first-line treatment for type 2 diabetes, providing robust 
glucose-lowering effects, a well-established safety pro-
file, and a cost-effective option for patients [12]. MET has 
been found to penetrate the blood-brain barrier in prior 
investigations, enabling it to exert numerous beneficial 
effects within the central nervous system, including anti-
inflammatory and neuroprotective properties [13,14]. 
Several studies have demonstrated the anti-inflammatory 
effects of MET in various experimental models of inflam-
mation. Additionally, several studies have demonstrated 
the neuroprotective effects of MET. These studies suggest 
that MET protects against neuronal damage by reducing 
oxidative stress, inflammation, and apoptosis [15]. These 
studies indicate that MET's anti-inflammatory effects are 
likely mediated by inhibition of NF-κB signaling [16]. Pan 
et al. [1] reported that MET has the potential to reduce 
morphine tolerance in mice by inhibiting microglial acti-
vation and suppressing central sensitization in the spinal 
cord. The findings suggest that MET could be useful for 
managing opioid tolerance in chronic pain treatment. 
However, further studies are required to understand its 
mechanisms and determine its clinical applicability. 
Thus, the present study aimed to investigate the possible 

effect of acute and chronic administration of MET on tol-
erance to anti-nociceptive effects of SS in male rats.

MATERIALS AND METHODS

1. Animals

Fifty-six male Wistar rats were used in this research 
(weight 200–250 g). Rats were randomly divided into 8 
groups (n = 7). All the rats were housed in special Plexi-
glas cages with dimensions of 30 cm × 40 cm × 15 cm 
and in a situation with controlled conditions in repeated 
periods of 12 hours of light and 12 hours of darkness (the 
light cycle starts at 7 a.m.). Food and water were freely 
available, and the temperature was kept at 23°C ± 2.0°C. 
The instructions for the care and use of laboratory ani-
mals were followed throughout all experimental proce-
dures (National Academic Press, Washington D.C, 2010). 
All experimental protocols were approved by the ethics 
committee at Torbat Heydariyeh University of Medical 
Sciences (IR.THUMS.REC.14000.027). All animals were 
handled cautiously to minimize undesired stress.

2. Drugs and experimental groups

SS (Sigma-Aldrich), and MET (Merck) were each injected 
intraperitoneally after being completely dissolved in 
saline (0.9%). The rats were divided into the following 8 
groups: (1) the control, which received saline (as a vehi-
cle) daily for 7 days; (2) SS, which received salicylate (300 
mg/kg) daily for 7 days; (3) Met50, which received MET 
(50 mg/kg) for 7 days; (4) Met75, which received MET (75 
mg/kg) for 7 days; (5) Met100, which received MET (100 
mg/kg) for 7 days; (6) SS + Met50, which received salicy-
late (300 mg/kg) and MET (50 mg/kg) for 7 days; (7) SS + 
Met75, which received salicylate (300 mg/kg) and MET 
(75 mg/kg) for 7 days; and (8) SS + Met100, received sa-
licylate (300 mg/kg) and MET (100 mg/kg) for 7 days. The 
drug doses were chosen based on studies evaluating the 
analgesic effects of intraperitoneally injected SS and MET 
in rats [17–20].

3. Hot plate test

A study demonstrated that tolerance to NSAID's antino-
ciceptive effects is mediated by the endogenous opioid 
system, potentially involving descending pain modula-
tory systems [21]. The hot plate test is used to assess 
supraspinal pain pathways in rats, as it was shown that 
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hind limb withdrawal does not occur in rats with spinal 
transection [22]. Therefore, to assess the anti-nociceptive 
effects of the drugs the hot plate test (Borj Sanat Azma) 
was performed. For this procedure, the heat was adjusted 
to a constant temperature of 50°C ± 2°C. Individual rats 
were placed on a hot plate, and their response latency (the 
time taken to withdraw a hind paw, lick, or jump) was 
recorded in seconds. A cut-off duration of 50 seconds was 
specified to prevent tissue injury. To assess acute drug 
response, the mean reaction time was recorded at 15, 30, 
45, and 60 minutes after drug administration.

4. Statistical analysis

All data were presented as mean ± standard error of the 
mean. One-way analysis of variance (ANOVA) test and 
Tukey's post hoc test were used for statistical analysis of 
data with a single independent variable. Two-way ANOVA 
was performed for data with numerous independent vari-
ables, followed by Tukey's post hoc test. The GraphPad 
Prism software (version 8.0) was used to perform statisti-
cal analyses and prepare figures. Statistical significance 
for differences between means was considered as P < 0.05.

RESULTS

1. Response time evaluation of acute treatments

To determine of best response time, after the first injec-
tion of the treatments, hot plate latencies were recorded 
each 15 minutes until 60 minutes. As shown in Fig. 1 
most responses to the treatments were 45 minutes after 
injection.

2. The analgesic effect of MET

Different doses of MET significantly increased hot plate 
latency on the first day after injection as compared to the 
control group (Met50, P = 0.048; Met75, P = 0.014). More-
over, the Met50 group still showed a significant effect 
compared with the control group on the second day after 
injection (P = 0.025; Fig. 2A). Analysis of the line chart 
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Fig. 1. Line chart of hot plate latencies after injection of the 
treatments. Data were presented as mean ± standard error of 
the mean, n = 7. Met50: received MET (50 mg/kg) for 7 days, 
Met75: received MET (75 mg/kg) for 7 days, Met100: received 
MET (100 mg/kg) for 7 days, SS: received salicylate (300 mg/
kg) daily for 7 days, MET: metformin.

Fig. 2. Effect of different doses of metformin (MET) on hot plate latencies. (A) Line chart of hot plate latencies after MET injection 
at different doses over time. (B) Area under curve of the line chart. Data were presented as mean ± standard error of the mean, n 
= 7, and analyzed by ANOVA followed by Tukey’s multiple comparison tests. (a) Compared to the control group, (b) Compared to the 
Met50 group. Met50: received MET (50 mg/kg) for 7 days, Met75: received MET (75 mg/kg) for 7 days, Met100: received MET (100 
mg/kg) for 7 days. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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area under the curve (AUC) was shown MET-treated 
groups have significantly higher hot plate latencies than 
the control group (Met50, Met75, P < 0.001; Met100, P = 
0.019). Also, the Met100 group had a significantly lower 
AUC as compared to the Met50 group (P = 0.002; Fig. 2B).

3. The effect of MET co-treatment on salicylate 

tolerance

Salicylate injection significantly increased hot plate la-
tency as compared to the control group (P < 0.001) but 
this latency decreased through the days after injection, 
and after day 4, salicylate injection did not significantly 
increase the latency, which indicated tolerance develop-
ment to the salicylate. SS + Met co-treatment somehow 
prevented this tolerance development and the latency 
remained significant after day 4 (SS + Met50, P = 0.002; SS 
+ Met75, P = 0.025). Moreover, after day 5 the SS + Met50 
group latency became significant to the SS group (P = 
0.018; Fig. 3A). Analysis of the line chart AUC showed that 
the salicylate salicylate-treated groups have significantly 
higher hot plate latency than the control group (P < 0.001). 
Co-treatment of SS + Met50 had a stronger analgesic ef-
fect as compared to the SS group (P = 0.015; Fig. 3B).

DISCUSSION

In the present study, the authors investigated the MET ef-
fect on salicylate tolerance development. MET is a well-

known drug and widely used to treat patients with type 2 
diabetes. It was shown that MET activates AMP-activated 
protein kinase (AMPK), which plays a role in nocicep-
tive processing. Therefore, it is expected to have an effect 
on nociception [23,24]. Studies show that MET reduces 
neuropathic pain in rodents by suppressing aberrant 
translation pathways in primary afferent neurons and in-
hibiting neuronal excitability [25]. Moreover, MET has the 
potential to prevent the development of pain and thermal 
hyperalgesia in inflammatory pain induction models 
[26,27]. In agreement with previous studies, it was found 
that administration of the MET induced analgesic effects, 
as evidenced by the increased hotplate latency observed 
in the MET-treated groups (Fig. 2). A study reported that 
MET significantly increased nociceptive response latency 
in the hot-plate model [28]. A dose-response curve study 
of MET has revealed that the efficacy of the drug is bi-
phasic and reduces at both very low and high doses [29]. 
Another study demonstrated that MET at 50 mg/kg at-
tenuates IL-1β and TNF-α levels better than high doses of 
100 and 200 mg/kg, and also this dose has stronger anal-
gesic efficacy than higher doses in the spinal cord injury 
model [19]. The authors’ results, in accordance with the 
mentioned studies, indicate that MET at the dose of 50 
mg/kg had the highest analgesic effect, and the Met100 
group had significantly lower AUC than the Met50 group 
(Fig. 2B). NSAIDs are widely used for mild pain relief and 
produce their effects by inhibiting cyclo-oxygenase, a key 
enzyme in the production of prostaglandins which poten-
tiate the pain caused by other mediators, e.g., histamine, 

Fig. 3. Effect of salicylate and metformin (MET) co-treatment on hot plate latencies. (A) Line chart of the groups hot plate latencies 
thorough the days. (B) Area under curve of the line chart. Data were presented as mean ± standard error of the mean, n = 7, and 
analyzed by ANOVA followed by Tukey’s multiple comparison tests. (a) Compared to the control group, (b) Compared to the SS group, 
(c) Compared to the Met50 group, (d) Compared to the Met75 group. Met50: received MET (50 mg/kg) for 7 days, Met75: received 
MET (75 mg/kg) for 7 days, Met100: received MET (100 mg/kg) for 7 days, SS: received salicylate (300 mg/kg) daily for 7 days. 
****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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serotonin, and bradykinin [30]. Studies have shown that 
NSAIDs could inhibit spinal cord nociceptive neurons 
[31]. It is confirmed that the usual analgesics, like lysine-
acetylsalicylate, induce antinociception through the 
activation of neurons in opioid-related brain structures 
[32]. Also, another study showed that a morphine antago-
nist, naloxone can block the analgesic effects of NSAIDs 
[5]. This evidence suggests that the analgesic effect of 
NSAIDs may be related to the endogenous opioid system. 
In this study, after injecting salicylate, the hot plate la-
tency increased. However, after repeated administration, 
this effect was reduced and on day 5, the latency reached 
the same level as the control group (Fig. 3A). Consistent 
with the authors’ observations, a study showed that ad-
ministering diclofenac prolongs the response time of the 
hot plate in rats [33]. Another study reports that systemic 
injections of NSAIDs attenuate tail-flick and hot plate 
responses and repeated treatment leads to tolerance 
development. Moreover, this confirms that the tolerance 
was related to an opiate-mediated mechanism [34]. In 
the present study, it was found that co-treatment of MET 
with salicylate could prevent tolerance development as 
evidenced by hot plate response persistence in the co-
treatment groups (Fig. 3A). Also, the SS + Met50 group 
had a significantly higher analgesic effect than the SS 
group (Fig. 3B). It was reported that MET reduced the de-
velopment of analgesic tolerance resulting from repeated 
intraperitoneal injections of morphine in mice [35]. A 
study found that MET could enhance the analgesic effects 
of ibuprofen and aspirin in an inflammatory pain model, 
and this effect is not related to pharmacokinetic interac-
tions [20]. MET activates AMPK, a kinase present in all 
cells that regulates various functions. In neural cells, it in-
hibits mitogen-activated protein kinase and mammalian 
target of rapamycin kinase pathways, which are impor-
tant for pain plasticity and sensitization [36,37]. As toler-
ance to the analgesic effects of NSAIDs is related to the 
endogenous opioid system, and a recent study showed 
MET could prevent opioid-related tolerance, it is possible 
that MET, through AMPK activation, affects the opioid 
system and reduces salicylate tolerance development.

This study did not have sufficient tests to confirm this 
possibility, and further research is needed to explore the 
mechanism. Specifically, changes in the excitability of 
the ascending and descending pain pathways must be 
investigated by membrane potential recording. In addi-
tion, examining changes in gene expression and receptor 
density could help identify the mechanism behind this 
effect. Unfortunately, due to budget and device limita-
tions, these changes were not studied. From the obtained 

results it could be concluded that MET has the potential 
to reduce analgesic tolerance induced by repeated intra-
peritoneal injections of SS in Wister rats. This suggests 
that MET could be a new approach to preventing NSAID 
analgesic tolerance.
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