DOI QR코드

DOI QR Code

Guidance offered to teachers in curriculum materials for engaging students in proof tasks: The case of Korean grade 8 geometry

  • Received : 2024.01.22
  • Accepted : 2024.06.10
  • Published : 2024.06.30

Abstract

Researchers and curricula continue to call for proof to serve a central role in learning of mathematics throughout kindergarten to grade 12 and beyond. Despite its prominence and recognition gained during past decades, proof is still a stumbling block for both teachers and students. Research efforts have been made to address issues related to teaching and learning of proof. An area in which such research efforts have been made is analysis of curriculum material (i.e. textbook analysis) with a focus on proof. This study is another research effort in this area of research through investigating the guidance offered in curriculum materials with the following research question: What is the nature (e.g., kinds of content knowledge, pedagogical content knowledge) of guidance is offered for teachers to implement proof tasks in grade 8 geometry textbooks? Results indicate that the guidance offered for proof tasks are concerned more with content knowledge about the content-specific instructional goals than with pedagogical content knowledge which supports teachers in preparing in-class interactions with students to teach proof.

Keywords

References

  1. Australian Curriculum, Assessment and Reporting Authority [ACARA]. (2015). Australian curriculum: Mathematics. Retrieved July 28, 2021 from https://australiancurriculum.edu.au/f-10-curriculum/mathematics/
  2. Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is-or might be-the role of curriculum materials in teacher learning and instructional reform? Educational Researcher, 25(9), 6-14. https://doi.org/10.3102/0013189X025009006
  3. Ball, D. L., & Cohen, D. K. (2002). Instructional improvement and the problem of scale [Unpublished manuscript, University of Michigan].
  4. Basturk, S. (2010). First-year secondary school mathematics students' conceptions of mathematical proofs and proving. Educational Studies, 36(3), 283-298. https://doi.org/10.1080/03055690903424964
  5. Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher, 66(3), 207-214. https://doi.org/10.5951/MT.66.3.0207
  6. Bergwall, A. (2021). Proof-related reasoning in upper secondary school: Characteristics of Swedish and Finnish textbooks. International Journal of Mathematical Education in Science and Technology, 52(5), 731-751. https://doi.org/10.1080/0020739X.2019.1704085
  7. Bergwall, A., & Hemmi, K. (2017). The state of proof in Finnish and Swedish mathematics textbooks-Capturing differences in approaches to upper-secondary integral calculus. Mathematical Thinking and Learning, 19(1), 1-18. https://doi.org/10.1080/10986065.2017.1258615
  8. Bieda, K. N. (2010). Enacting proof-related tasks in middle school mathematics: Challenges and opportunities. Journal for Research in Mathematics Education, 41(4), 351-382. https://doi.org/10.5951/jresematheduc.41.4.0351
  9. Buchbinder, O., & Cook, A. (2018). Examining the mathematical knowledge for teaching of proving in scenarios written by pre-service teachers. In O. Buchbinder, & S. Kuntze (Eds.), Mathematics teachers engaging with representations of practice: A dynamically evolving field (pp. 131-154). Springer Cham. https://doi.org/10.1007/978-3-319-70594-1_8
  10. Buchbinder, O., & McCrone, S. (2019). Prospective teachers enacting proof tasks in secondary mathematics classrooms. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 147-154). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME
  11. Cai, J., & Cirillo, M. (2014). What do we know about reasoning and proving? Opportunities and missing opportunities from curriculum analyses. International Journal of Educational Research, 64, 132-140. https://doi.org/10.1016/j.ijer.2013.10.007
  12. Charalambous, C., Delaney, S., Hsu, H., & Mesa, V. (2010). A comparative analysis of the addition and subtraction of fractions in textbooks from three countries. Mathematical Thinking and Learning, 12(2), 117- 151. https://doi.org/10.1080/10986060903460070
  13. Chazan, D. (1993). High school geometry students' justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24(4), 359-387. https://doi.org/10.1007/BF01273371
  14. Cirillo, M. (2011). "I'm like the Sherpa guide": On learning to teach proof in school mathematics. In B. Ubuz (Ed.), Proceedings of the thirty-fifth conference of the international group for the psychology of mathematics education (Vol. 2, pp. 241-248). PME.
  15. Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20(1), 41-53. https://doi.org/10.1080/ 0141192940200105
  16. Coburn, C. E. (2001). Making sense of reading: Logics of reading in the institutional environment and the classroom [Doctoral dissertation, Stanford University].
  17. Collopy, R. (2003). Curriculum materials as a professional development tool: How a mathematics textbook affected two teachers' learning. Elementary School Journal, 103(3), 287-311. https://doi.org/10.1086/499727
  18. Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34(3), 3-14. https://doi.org/10.3102/0013189X034003003
  19. Davis, J. D. (2009). Understanding the influence of two mathematics textbooks on prospective secondary teachers' knowledge. Journal of Mathematics Teacher Education, 12, 365-389. https://doi.org/10.1007/s10857-009-9115-2
  20. Davis, J. D., Smith, D. O., Roy, A. R., & Bilgic, Y. K. (2014). Reasoning-and-proving in algebra: The case of two reform-oriented U.S. textbooks. International Journal of Educational Research, 64, 92-106. https://doi.org/10.1016/j.ijer.2013.06.012
  21. Department for Education. [DoE] (2014). Mathematics programmes of study: Key stage 4 (National curriculum in England). Retrieved November 28, 2021 from https://www.gov.uk/government/uploads
  22. Dickerson, D. S., & Doerr, H. M. (2014). High school mathematics teachers' perspectives on the purposes of mathematical proof in school mathematics. Mathematics Education Research Journal, 26(4), 711-733. https://doi.org/10.1007/s13394-013-0091-6
  23. Dreyfus, T. (1999). Why Johnny can't prove. Educational Studies in Mathematics, 38(1- 3), 85-109. https://doi.org/10.1023/A:1003660018579
  24. Fan, L. (2013). Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM-Mathematics Education, 45(5), 765-777. https://doi.org/10.1007/s11858-013-0530-6
  25. Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81-91. https://doi.org/10.1016/j.ijer.2013.09.014
  26. Grouws, D. A., Smith, M. S., & Sztajn, P. (2004). The preparation and teaching practices of U.S. mathematics teachers: Grades 4 and 8. In P. Kloosterman & F. Lester (Eds.), The 1990 through 2000 mathematics assessments of the National Assessment of Educational Progress: Results and interpretations (pp. 221-269). National Council of Teachers of Mathematics.
  27. Han, I. (2005). A study on intuitive verification and rigor proof in geometry of Korean and Russian 7~8 grade's mathematics textbooks. The Mathematical Education, 44(4), 541-554.
  28. Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In Lester, F. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 805-842). Information Age Publishing.
  29. Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction, 24(1), 73-122. https://doi.org/10.1207/s1532690xci2401_2
  30. Hong, D. & Choi, K. (2014). A comparison of Korean and American secondary school textbooks: The case of quadratic equations. Educational Studies in Mathematics, 85(2), 241-263. https://doi.org/10.1007/s10649-013-9512-4
  31. Hummer, J. (2016). Common Core Geometry Textbooks: Opportunities for reasoning and proving. In Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.), Proceedings of the 38th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 274-277). The University of Arizona.
  32. Hwang, S., Kang, B., Yoon, K., Lee, K., Jang, H., Jung, J., & Cho, S. (2018). Middle school mathematics 2 teacher guide. Mirae N Publication.
  33. Jang, K., Kang, H., Kim, D., Ahn, J., Lee, D., Hong, E., Lee, M., Kim, M., Song, E., Ha, S., Ji, Y., & Koo, N. (2018). Middle school mathematics 2 teacher guide. Jihaksa Publication.
  34. Joo, M., Kang, E., Kang, S., Kang, S., Kim, H., Oh, H., & Kwon, S. (2018). Middle school mathematics 2 teacher guide. Keumsung Publication.
  35. Jung, H., & Lee, K. (2016). A comparative study of the mathematics textbooks tasks of Korea and the USA: Focused on conditions for parallelograms. School Mathematics, 18(4), 749-771.
  36. Kang, O., Kwon, E., Hwang, H., Jeon, D., Noh, J., Woo, H., Yoon, S., Lee, H., Yoo, S., Yoon, H., Hong, C., & Jung, K. (2018). Middle school mathematics 2 teacher guide. Donga Publication.
  37. Kim, H. (2021). Problem posing in the instruction of proof: Bridging everyday lesson and proof. Research in Mathematical Education, 24(3), 255-278. https://doi.org/10.7468/jksmed.2021.24.3.255
  38. Kim, H. (2022). Secondary teachers' views about proof and judgements on mathematical arguments. Research in Mathematical Education, 25(1), 65-89. http://doi.org/10.7468/jksmed.2022.25.1.65
  39. Kim, H. (2023). An investigation of proving-related tasks in geometry: The case of grade 8 Korean textbooks. Journal of Educational Research in Mathematics, 33(3), 821-835. https://doi.org/10.29275/jerm.2023.33.3.821
  40. Kim, H., Na, G., & Knuth, E. (forthcoming). Lessons learned from cross-cultural curricular research: The case of proving-related activities. In D. Thompson, M. Conner, & C. Suurtamm (Eds.), Lessons learned from research on mathematics curriculum (pp. 97-115). Information Age Publishing.
  41. Kim, M. (2013). Secondary mathematics teachers' use of mathematics textbooks and teachers' guide. School Mathematics, 15(3), 503-531.
  42. Kim, O. (2018). Teacher decisions on lesson sequence and their impact on opportunities for students to learn. In L. Fan, C. Trouche, S. Qi, S. Rezat, & J. Visnovska J. (Eds.), Research on mathematics textbooks and teachers' resources: Advancess and issues (pp. 315-339). Springer. https://doi.org/10.1007/978-3-319-73253-4_15
  43. Kim, W., Cho, M., Bang, K., Lim, S., Kim, D., Kang, S., Bae, S., Ji, E., & Kim, Y. (2018). Middle school mathematics 2 teacher guide. Visang Publication.
  44. Knuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof. Journal for Research in Mathematics Education, 33(5), 379-405. https://doi.org/10.2307/4149959
  45. Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students' production of mathematical justifications. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 153-170). Routledge.
  46. Koh, H., Kim, E., Kim, I., Lee, B., Han, J., Jung, N., Jung, M., Choi, S., Kim, J., Jung, S., Cho, J., Choi, H., & Choi, H. (2018). Middle school mathematics 2 teacher guide. Kyohaksa Publication.
  47. Kotelawala, U. (2016). The status of proving among US secondary mathematics teachers. International Journal of Science and Mathematics Education, 14(6), 1113-1131. https://doi.org/10.1007/s10763-015-9638-1
  48. Lee, J., Choi, B., Kim, D., Lee, J., Kim, S., Kwon, Y., Kim, H., Kim, S., & Kang, S. (2018). Middle school mathematics 2 teacher guide. Chunjae Publication.
  49. Lew, H., Sunwoo, H., Shin, B., Jung, D., Jang, Y., Sul, J., & Park, S. (2018). Middle school mathematics 2 teacher guide. Chunjae Publication.
  50. Lepik, M., Grevholm, B., & Viholainen, A. (2015). Using textbooks in the mathematics classroom-the teachers' view. Nordic Studies in Mathematics Education, 20(3-4), 129-156.
  51. Lesseig, K. (2016). Investigating mathematical knowledge for teaching proof in professional development. International Journal of Research in Education and Science, 2(2), 253-270. https://doi.org/10.21890/ijres.13913
  52. Matic, J., & Gracin, G. (2021). How do teacher guides give support to mathematics teachers? Analysis of a teacher guide and exploration of its use in teachers' practices. Research in Mathematics Education, 23(1), 1-20. https://doi.org/10.1080/14794802.2019.1710554
  53. Ministry of Education. [MoE] (2015). 2015 revised mathematics curriculum. Author.
  54. Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: The cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 94(1), 37-54. https://doi.org/10.1007/s10649-016-9711-x
  55. National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Author.
  56. NCTM. (2009). Focus in high school mathematics: Reasoning and sense making. Author.
  57. Otten, S., Males, L., & Gilbertson, N. (2014). The introduction of proof in secondary geometry textbooks. International Journal of Educational Research, 64, 107-118. https://doi.org/10.1016/j.ijer.2013.08.006
  58. Park, H., & Lee, J. (2016). Analysis of conjecture and justification in the second grade middle school mathematics textbooks: Focusing on geometry. Journal of Research in Curriculum Instruction, 20(5), 371-381. http://doi.org/10.24231/rici.2016.20.5.371
  59. Park, K., Lee, J., Kim, J., Nam, C., Lim, J., Yoo, Y., Kwon, S., Kim, S., Kim, J., Park, S., Yang, S., Lee, E., Jang, M., Jang, M, Jung, J., Joo, M., Choi, S., & Hwang, J. (2018). Middle school mathematics 2 teacher guide. Donga Publication.
  60. Remillard, J. T. (2000). Can curriculum materials support teachers' learning? Two fourth-grade teachers' use of a new mathematics text. The Elementary School Journal, 100(4), 331-350. https://doi.org/10.1086/499645
  61. Rezat, S., Fan, L., & Pepin, B. (2021). Mathematics textbooks and curriculum resources as instruments for change. ZDM-Mathematics Education, 53, 1189-1206. https://doi.org /10.1007/s11858-021-01309-3
  62. Schoenfeld, A. H. (1983). Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive science, 7(4), 329-363.
  63. Schoenfeld, A. H. (1994). What do we know about mathematics curricula? The Journal of Mathematical Behavior, 13(1), 55-80. https://doi.org/10.1016/0732-3123(94)90035-3
  64. Schneider, R. M., & Krajcik, J. (2002). Supporting science teacher learning: The role of educative curriculum materials. Journal of Science Teacher Education, 13(3), 221-245. https://doi.org/10.1023/A:1016569117024
  65. Senk, S. (1985). How well do students write geometry proofs? The Mathematics Teacher, 78(6), 448-456. https://doi.org/10.5951/MT.78.6.0448
  66. Steele, M. D., & Rogers, K. C. (2012). Relationships between mathematical knowledge for teaching and teaching practice: The case of proof. Journal of Mathematics Teacher Education, 15, 159-180. https://doi.org/10.1007/s10857-012-9204-5
  67. Stein, M., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. https://doi.org/10.1080/1380361960020103
  68. Stein, M., Remillard, J., & Smith, M. (2007). How curriculum influences student learning. In Frank K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319-370). Information Age Publishing.
  69. Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in mathematics education research. In A. Gutierrez, G. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 315-351). Brill. https://doi.org/10.1007/978-94-6300-561-6_9
  70. Stylianides, G. J. (2008). Investigating the guidance offered to teachers in curriculum materials: The case of proof in mathematics. International Journal of Science and Mathematics Education, 6, 191-215. https://doi.org/10.1007/s10763-007-9074-y
  71. Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and Learning, 11(4), 258-288. https://doi.org/10.1080/10986060903253954 
  72. Stylianides, G. J. (2014). Textbook analyses on reasoning-and-proving: Significance and methodological challenges. International Journal of Educational Research, 64, 63-70. https://doi.org/10.1016/j.ijer.2014.01.002
  73. Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237-266). NCTM.
  74. Stylianou, D. A., Blanton, M. L., & Knuth, E. J. (Eds.). (2010). Teaching and learning proof across the grades: A K-16 perspective. Routledge.
  75. Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253-295. https://doi.org/10.5951/jresematheduc.43.3.0253
  76. Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Springer Science & Business Media.
  77. Wilson, M. S., & Lloyd, G. M. (2000). Sharing mathematical authority with students: The challenge for high school teachers. Journal of Curriculum and Supervision, 15(2), 146-169.
  78. Zhang, D., & Qi, C. (2019). Reasoning and proof in eighth-grade mathematics textbooks in China. International Journal of Educational Research, 98, 77-90. https://doi.org/10.1016/j.ijer.2019.08.015