DOI QR코드

DOI QR Code

Fragility Function According to Failure Mode for Lightly Reinforced Concrete Columns

노후 철근콘크리트 건물 기둥의 파괴 모드에 따른 취약도 함수

  • Koo, Su Hyun (Department of Architectural Engineering, Hanyang University) ;
  • Han, Sang Whan (Department of Architectural Engineering, Hanyang University)
  • 구수현 (한양대학교 건축공학과) ;
  • 한상환 (한양대학교 건축공학과)
  • Received : 2024.05.13
  • Accepted : 2024.06.05
  • Published : 2024.07.01

Abstract

Many older reinforced concrete (RC) buildings were constructed and designed with only gravity loads in mind. Columns in those buildings have insufficient reinforcement details that do not satisfy the requirements specified in current seismic design standards. This study aims to develop drift-based fragility functions for lightly RC columns. For this purpose, a database of 193 lightly RC columns was constructed to determine central and dispersion values of drift ratios for individual damage states. Additionally, to develop more accurate fragility functions of the columns, the failure mode of RC columns was incorporated into fragility functions. The classification procedure for column failure mode is proposed in this study. Fragility functions for older RC columns are constructed according to four different damage states. The main variables of the fragility functions proposed in this study are column properties and failure mode.

Keywords

Acknowledgement

본 논문은 한국연구재단 (2020R1A2C2010548) 과제의 일환으로 수행되었음.

References

  1. KDS 41 17 00. Seismic Building Design Code. Korea Construction Standards Center; c2019.
  2. Hertanto E. Seismic assessment of pre-1970s reinforced concrete structure.
  3. Lee CS, Park YS, Han SW. Bidirectional lateral loading of RC columns with short lap splices. Earthquake Engineering Society of Korea. 2020;24(1):19-27. https://doi.org/10.5000/EESK.2020.24.1.019
  4. Lee CS, Han SW. Development of model parameter prediction equations for simulating load-deformation response of non-ductile RC columns. Earthquake Engineering Society of Korea. 2019;23(2): 119-129. https://doi.org/10.5000/EESK.2019.23.2.119
  5. Lynn AC, Moehle, JP, Mahin SA, Holmes WT. Seismic evaluation of existing reinforced concrete building columns. Earthq Spect. 1996; 12(4):715-739. https://doi.org/10.1193/1.1585907
  6. Galanis PS, Moehle JP. Development of collapse indicators for risk assessment of older-type reinforced concrete buildings. Earthq Spect. 2015;31(4):1991-2006.
  7. Sezen H, Moehle JP. Shear strength model for lightly reinforced concrete columns. J Struct Eng. 2004;130(11):1692-1703. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692)
  8. EI-Sokkary H, Galal K. Analytical investigation of the seismic performance of RC frames rehabilitated using different rehabilitation techniques. Eng Struct. 2009;31(9):1955-1966. https://doi.org/10.1016/j.engstruct.2009.02.048
  9. Han SW, Koh H, Lee CS. Accurate and efficient simulation of cyclic behavior of diagonally reinforced concrete coupling beams. Earthq Spect. 2019;35(1):361-381. https://doi.org/10.1193/060717EQS108M
  10. Aslani H, Miranda E. Fragility assessment of slab-column connections in existing non-ductile reinforced concrete buildings. J Earthq Eng. 2005;9(6):777-804. https://doi.org/10.1080/13632460509350566
  11. Gogus A, Wallace JW. Fragility assessment of slab-column connections. Earthq Spect. 2015;31(1):159-177. https://doi.org/10.1193/061812EQS220M
  12. Federal Emergency Management Agency. Seismic performance assessment of buildings. Volumne 1 - Methodology. FEMA P-58-1. Washington, D. C.; c2012.
  13. Han SW, Koh H, Lee CS. Fragility functions of different groups of diagonally reinforced concrete coupling beams (DRCBs). J Bull Earthq Eng. 2020;18:165-187. https://doi.org/10.1007/s10518-019-00693-2
  14. Han SW, Wen YK. Method of reliability-based seismic design. I: Equivalent nonlinear systems. J Struc Eng. 1997;123(3):256-263. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(256)
  15. Aslani H. Probabilistic earthquake loss estimation and loss disaggregation in buildings. Standford University; c2005. 355 p.
  16. Zhu L, Elwood KJ, Haukaas T. Classification and seismic safety evaluation of existing reinforced concrete columns. J Struct Eng. 2007;133(9):1316-1330. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1316)
  17. Cardone D, Perrone G. Damage and loss assessment of pre-70 RC frame buildings with FEMA P-58. J Earthq Eng. 2017;21:23-61. https://doi.org/10.1080/13632469.2016.1149893
  18. Goksu C. Fragility functions for reinforced concrete columns incorporating recycled aggregates. Eng Struct. 2021;233:111908.
  19. Berry M, Parrish M, Eberhard M. PEER structural performance database user's manual (version 1.0). Pacific Earthquake Engineering Research Center. University of California. Berkely. CA; c2004.
  20. Ghannoum WM, Sivaramakrishnan B, Pujol S, Catlin AC, Fernando S, Yoosuf N, Wang Y. NEES: ACI 369 rectangular column database. National Science Foundation. Alexandria. VA; c2015.
  21. Lee CS, Han SW. Computationally effective and accurate simulation of cyclic behaviour of old reinforced concrete columns. Eng Struct. 2018;173:892-907. https://doi.org/10.1016/j.engstruct.2018.07.020
  22. Elwood KJ, Matamoros AB, Wallace JW, Lehman DE, Heintz JA, Mitchell AD, Moehle JP. Update to ASCE/SEI 41 concrete provision. Earthquake Spectra. 2007;23(3):493-523. https://doi.org/10.1193/1.2757714
  23. Han SW, Lee CS, Paz Zambrana MA, Lee KH. Calibration factor for ASCE 41-17 modeling parameters for stocky rectangular RC columns. Applied Sciences. 2019;9(23):5193.
  24. Wan HT, Han XL, Ji J. Analyses of reinforced concrete columns by perf ormance-based design method. J Cent S Univ. 2010;41(4): 1584-1589.
  25. Qi YL, Han XL, Ji J. Failure mode classification of reinforced concrete column using Fisher method. Journal of Central South University. 2013;20:2863-2869. https://doi.org/10.1007/s11771-013-1807-1
  26. Elwood KJ, Moehle JP. Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthq Spect. 2005; 21(1):71-89. https://doi.org/10.1193/1.1849774
  27. ASCE. Seismic evaluation and retrofit of existing buildings (ASCE 41-17). American Society of Civil Engineers. Reston. VA.
  28. Ross SM. Peirce's criterion for the elimination of suspect experimental data. J Eng tech. 2003;20(2):38-41.
  29. Lowes LN, Li J. Fragility curves for reinforced concrete moment frames. In: Proceedings the Seismic Performance of Existing Buildings and Other Struture. 2010;403-414.
  30. Moretti M, Tassios TP. Behaviour of short columns subjected to cyclic shear displacements: Experimental results. Eng Struct. 2007;29(8):2018-2029. https://doi.org/10.1016/j.engstruct.2006.11.001
  31. Park R, Paulay T. Reinforced concrete structures. John Wiley & Sons; c1991.
  32. Baradaran Shoraka M, Elwood KJ. Mechanical model for non-ductile reinforced concrete columns. J Earthq Eng. 2013;17(7):937-957. https://doi.org/10.1080/13632469.2013.794718
  33. Kakavand MRA, Allahvirdizadeh R. Enhanced emprical models for predicting the drif t capacity of less ductile RC columns with flexural, shear, or axial failure modes. Front Struct Civ Eng. 2019; 13:1251-1270. https://doi.org/10.1007/s11709-019-0554-2
  34. Ang AHS, Tang WH. Probability concepts in engineering: emphasis on applications to civil and environmental engineering; c2007.
  35. Lignos DG, Karamanci E. Drift-based and dual parameter fragility curves for concentrically braced frames in seismic regions. J Constr Steel Res. 2013;90:209-220.
  36. Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 2010;62:399-402. https://doi.org/10.1080/01621459.1967.10482916
  37. Ying M, Jin-Xin G. Seismic failure modes and deformation capacity of reinforced concrete columns under cyclic loads. Periodica Polytechnica Civil Engineering. 2018;62(1):80-91. https://doi.org/10.3311/PPci.9893