DOI QR코드

DOI QR Code

NUP214 Rearrangements in Leukemia Patients: A Case Series From a Single Institution

  • Yu Jeong Choi (Department of Laboratory Medicine, Yonsei University College of Medicine) ;
  • Young Kyu Min (Department of Laboratory Medicine, Severance Hospital) ;
  • Seung-Tae Lee (Department of Laboratory Medicine, Yonsei University College of Medicine) ;
  • Jong Rak Choi (Department of Laboratory Medicine, Yonsei University College of Medicine) ;
  • Saeam Shin (Department of Laboratory Medicine, Yonsei University College of Medicine)
  • 투고 : 2023.07.29
  • 심사 : 2023.12.08
  • 발행 : 2024.07.01

초록

Background: The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods: To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results: In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions: We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.

키워드

과제정보

This study was supported by a grant from the National Research Foundation of Korea (NRF-2021R1I1A1A01045980).

참고문헌

  1. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 2002;158:915-27. https://doi.org/10.1083/jcb.200206106
  2. van Deursen J, Boer J, Kasper L, Grosveld G. G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J 1996;15:5574-83. https://doi.org/10.1002/j.1460-2075.1996.tb00942.x
  3. Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 2013;155:1233-43. https://doi.org/10.1016/j.cell.2013.10.055
  4. Schmitt C, von Kobbe C, Bachi A, Panté N, Rodrigues JP, Boscheron C, et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J 1999;18:4332-47. https://doi.org/10.1093/emboj/18.15.4332
  5. Napetschnig J, Blobel G, Hoelz A. Crystal structure of the N-terminal domain of the human protooncogene Nup214/CAN. Proc Natl Acad Sci U S A 2007;104:1783-8. https://doi.org/10.1073/pnas.0610828104
  6. Lim RY, Huang NP, Köser J, Deng J, Lau KH, Schwarz-Herion K, et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci U S A 2006;103:9512-7. https://doi.org/10.1073/pnas.0603521103
  7. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997;390:308-11. https://doi.org/10.1038/36894
  8. Gorello P, La Starza R, Varasano E, Chiaretti S, Elia L, Pierini V, et al. Combined interphase fluorescence in situ hybridization elucidates the genetic heterogeneity of T-cell acute lymphoblastic leukemia in adults. Haematologica 2010;95:79-86. https://doi.org/10.3324/haematol.2009.010413
  9. Rosati R, La Starza R, Barba G, Gorello P, Pierini V, Matteucci C, et al. Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. Haematologica 2007;92:232-5. https://doi.org/10.3324/haematol.10538
  10. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 2008;111:4668-80. https://doi.org/10.1182/blood-2007-09-111872
  11. von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G. Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer 1992;5:227-34. https://doi.org/10.1002/gcc.2870050309
  12. Graux C, Stevens-Kroef M, Lafage M, Dastugue N, Harrison CJ, Mugneret F, et al. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 2009;23:125-33. https://doi.org/10.1038/leu.2008.278
  13. Wang HP, He JJ, Zhu QY, Wang L, Li JH, Huang JS, et al. Case report: the first report of NUP214-ABL1 fusion gene in acute myeloid leukemia patient detected by next-generation sequencing. Front Oncol 2021;11:706798. https://doi.org/10.3389/fonc.2021.706798
  14. Slovak ML, Gundacker H, Bloomfield CD, Dewald G, Appelbaum FR, Larson RA, et al. A retrospective study of 69 patients with t(6;9)(p23;q34)AML emphasizes the need for a prospective, multicenter initiative for rare 'poor prognosis' myeloid malignancies. Leukemia 2006;20:1295-7. https://doi.org/10.1038/sj.leu.2404233
  15. Mendes A and Fahrenkrog B. NUP124 in leukemia: it's more than transport. Cells 2019;8:76. https://doi.org/10.3390/cells8010076
  16. Terlecki-Zaniewicz S, Humer T, Eder T, Schmoellerl J, Heyes E, Manhart G, et al. Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nat Struct Mol Biol 2021;28:190-201. https://doi.org/10.1038/s41594-020-00550-w
  17. De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O, et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell 2008;31:134-42. https://doi.org/10.1016/j.molcel.2008.05.005
  18. Wang J, Zhan QR, Lu XX, Zhang LJ, Wang XX, Zhang HY. The characteristics and prognostic significance of the SET-CAN/NUP214 fusion gene in hematological malignancies: a systematic review. Medicine (Baltimore) 2022;101:e29294. https://doi.org/10.1097/MD.0000000000029294
  19. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326-35. https://doi.org/10.1182/blood.V99.12.4326
  20. Ozbek U, Kandilci A, van Baal S, Bonten J, Boyd K, Franken P, et al. SETCAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. Am J Pathol 2007;171:654-66. https://doi.org/10.2353/ajpath.2007.060934
  21. Saito S, Nouno K, Shimizu R, Yamamoto M, Nagata K. Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol 2008;214:322-33. https://doi.org/10.1002/jcp.21199
  22. Oancea C, Rüster B, Henschler R, Puccetti E, Ruthardt M. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010;24:1910-9. https://doi.org/10.1038/leu.2010.180
  23. Wang Q, Qiu H, Jiang H, Wu L, Dong S, Pan J, et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica 2011;96:1808-14. https://doi.org/10.3324/haematol.2011.043083
  24. Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N, Graux C, et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 2010;42:530-5. https://doi.org/10.1038/ng.587
  25. Bolger AM, Lohse M, Usadel B, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-20. https://doi.org/10.1093/bioinformatics/btu170
  26. Kim H, Shim Y, Lee TG, Won D, Choi JR, Shin S, et al. Copy-number analysis by base-level normalization: an intuitive visualization tool for evaluating copy number variations. Clin Genet 2023;103:35-44. https://doi.org/10.1111/cge.14236
  27. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4-23. https://doi.org/10.1016/j.jmoldx.2016.10.002
  28. Zhang H, Zhang L, Li Y, Gu H, Wang X. SET-CAN fusion gene in acute leukemia and myeloid neoplasms: report of three cases and a literature review. Onco Targets Ther 2020;13:7665-81. https://doi.org/10.2147/OTT.S258365
  29. Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia 2011;25:130-4. https://doi.org/10.1038/leu.2010.247
  30. Li WJ, Cui L, Gao C, Zhao XX, Liu SG, Xing YP, et al. MRD analysis and treatment outcome in three children with SET-NUP214-positive hematological malignancies. Int J Lab Hematol 2011;33:e25-7. https://doi.org/10.1111/j.1751-553X.2011.01343.x
  31. Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ. Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol 2004;122:348-58. https://doi.org/10.1309/5DGB59KQA527PD47
  32. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374:2209-21. https://doi.org/10.1056/NEJMoa1516192
  33. Sandén C, Ageberg M, Petersson J, Lennartsson A, Gullberg U. Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer 2013;13:440. https://doi.org/10.1186/1471-2407-13-440
  34. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13:7587-95.
  35. De Keersmaecker K, Versele M, Cools J, Superti-Furga G, Hantschel O. Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia 2008;22:2208-16. https://doi.org/10.1038/leu.2008.242
  36. Kim H, Kim IS, Kim H. Emergence of BCR-ABL1 (p190) in acute myeloid leukemia post-gilteritinib therapy. Ann Lab Med. 2023;43:386-8. https://doi.org/10.3343/alm.2023.43.4.386