DOI QR코드

DOI QR Code

Fabrication and characterization of hybrid AlTiSrO/rGO thin films for liquid crystal orientation

액정 배향용 하이브리드 AlTiSrO/rGO 박막 제조 및 특성 평가

  • Byeong-Yun Oh (Research and Development Department, Cheomdanlab Inc.)
  • 오병윤
  • Received : 2024.06.01
  • Accepted : 2024.06.17
  • Published : 2024.06.29

Abstract

A hybrid thin film was prepared by doping reduced graphene oxide (rGO) into a sol-gel solution mixed with aluminum, titanium, and strontium using a brush coating method. The annealing temperature was carried out at 160, 260, and 360℃, and the difference in oxidation reaction was observed. The sol-gel solution created during the membrane manufacturing process generates a contractile force due to the shear stress of the brush bristles, forming a microgroove structure. This structure was confirmed through scanning electron microscopy analysis, and the presence of rGO was clearly revealed. As the annealing temperature increases, the oxidation and reduction reactions on the thin film surface become more active, so the intensity of the surface mixture increases. Moreover, the electro-optical properties were stabilized and improved by increasing the intensity of the mixtures. Likewise, the voltage-capacitance values are also significantly improved. Lastly, the transmittance measurement showed that it was suitable for liquid crystal display application.

환원된 산화 그래핀(rGO)을 알루미늄, 티타늄, 스트론튬이 혼합된 졸-겔 용액에 혼합하여 브러시 코팅법을 이용하여 액정배향용 하이브리드 박막을 제조하였다. 160, 260, 및 360℃에서 어닐링한 후 산화 반응의 차이를 관찰하였다. 박막 제조 과정에서 생성된 졸-겔 용액은 브러시 모의 전단 응력에 의해 수축력을 발생시켜 미세홈 구조를 형성하였다. 이러한 구조는 주사 전자 현미경 분석을 통해 확인되었으며, rGO의 존재가 명확하게 보였다. 어닐링 온도가 증가함에 따라서 박막 표면의 산화 및 환원 반응이 더욱 활성화되어 표면 혼합물의 강도가 증가하였다. 또한 혼합물의 강도를 증가시킴으로써 전기광학적 특성이 안정화되고 개선되었다. 더불어 전압-정전용량 값도 크게 향상되었다. 최종적으로 투과율 측정 결과 액정디스플레이의 액정 배향막으로 적용하기에 적합한 것으로 나타났다.

Keywords

References

  1. D. V. D. O. Henriquez, M. Kang, I. Cho, J. Choi, J. Park, O. Gul, J. Ahn, D.-S. Lee, and I. Park, "Low-Power, Multi-Transduction Nanosensor Array for Accurate Sensing of Flammable and Toxic Gases" Small methods, vol. 7, no. 3, pp. 2201352, 2023. 
  2. W. Hou, J. Li, Z. Cao, S. Lin, C. Pan, Y. Pang, and J. Liu, "Decorating Bacteria with a Therapeutic Nanocoating for Synergistically Enhanced Biotherapy", Small, vol. 17, no. 37, pp. 2101810, 2021. 
  3. S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli, and D. Passerone, "Porous Graphene as an Atmospheric Nanofilter", Small, vol. 6, no. 20, pp. 262-2271, 2010. 
  4. Y. Sasaki and K. Akiyoshi, "Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications", The Chemical Record, vol. 10, no. 6, pp. 366-376, 2010. 
  5. D. Yoo, S. Kim, W. Cho, J. Park, and J. Kim, "Hydroprinting Technology to Transfer Ultrathin, Transparent, and Double-Sided Conductive Nanomembranes for Multiscale 3D Conformal Electronics", Small methods, vol. 6, no. 1, pp. 2100869, 2022. 
  6. Y. J. Kim, Z. Zhuang, and J. S. Patel, "Effect of multidirection rubbing on the alignment of nematic liquid crystal ", Applied Physics Letters, vol. 77, no. 4, pp. 513-515, 2000. 
  7. S. Varghese, S. Narayanankutty, C. W. M. Bastiaansen, G. P. Crawford, and D. J. Broer, "Patterned Alignment of Liquid Crystals by μ-Rubbing", Advanced Materials, vol. 16, no. 18, pp. 1600-1605, 2004. 
  8. J.-H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment", Nature, vol. 420, no. 6912, pp. 159-162, 2002. 
  9. I. H. Song, H.-C. Jeong, J. H. Lee, J. Won, D. H. Kim, D. Lee, J. Y. Oh, J. I. Jang, Y. Liu, and D.-S. Seo, "Selective Liquid Crystal Driving Mode Achieved by Controlling the Pretilt Angle via a Nanopatterned Organic/Inorganic Hybrid Thin Film", Advanced Optical Materials, vol. 9, no. 9, pp. 2001639, 2021. 
  10. T.-T.-T. Nguyen, T.-N. Luu, D.-H. Nguyen, and T.-T. Duong, "Comparative Study on Backlighting Unit Using CsPbBr3 Nanocrystals/KSFM Phosphor + Blue LED and Commercial WLED in Liquid Crystal Display", Journal of Electronic Materials, vol. 50, pp. 1827-1834, 2021. 
  11. W.-K. Lee, Y. S. Choi, Y.-G. Kang, J. Sung, D.-S. Seo, and C. Park, "Super-Fast Switching of Twisted Nematic Liquid Crystals on 2D Single Wall Carbon Nanotube Networks", Advanced Functional Materials, vol. 21, no. 20, pp. 3843-3850, 2011. 
  12. H. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, "Frontier of transparent conductive oxide thin films", Vacuum, vol. 66, no. 3-4, pp. 419-425, 2002. 
  13. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, "Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices", Journal of Applied Physics, vol. 86, no. 3, pp. 1688-1692, 1999. 
  14. C. A. Mirkin and W. B. Caldwell, "Thin film, Fullerene-Based Materials" Tetrahedron, vol. 52, no. 14, pp. 5113-5130, 1996. 
  15. L. Hu, D. S. Hecht, and G. Gruner, "Carbon Nanotube Thin Films: Fabrication, Properties, and Applications", Chemical Reviews, vol. 110, no. 10, pp. 5790-5844, 2010. 
  16. Y. Liu, H. Zhou, N. O Weiss, Y. Huang, and X. Duan, "High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact", ACS Nano, vol. 9, no. 11, pp. 11102-11108, 2015. 
  17. I. Karteri, S. Karatas, A. A. Al-Ghamdi, and F. Yakuphanoglu, "The Electrical Characteristics of Thin Film Transistors with Graphene Oxide and Organic Insulators", Synthetic Metals, vol. 199, pp. 241-245, 2015. 
  18. Y. H. Shim, K. E. Lee, T. J. Shin, S. O. Kim, and S. Y. Kim, "Tailored Colloidal Stability and Rheological Properties of Graphene Oxide Liquid Crystals with Polymer-Induced Depletion Attractions", ACS Nano, vol. 12. no. 11, pp. 11399-11406, 2018. 
  19. S.-H. Hong, T.-Z. Shen, and J.-K. Song, "Electro-Optical Characteristics of Aqueous Graphene Oxide Dispersion Depending on Ion Concentration", The Journal of Physical Chemistry C, vol. 118, no. 45, pp. 26304-26312, 2014. 
  20. T.-Z. Shen, S.-H. Hong, and J.-K. Song, "Electro-Optical Switching of Graphene Oxide Liquid Crystals with an Extremely Large Kerr Coefficient", Nature Materials, vol. 13, no. 4, pp. 394-399, 2014. 
  21. J.-i. Fukuda, M. Yoneya, and H. Yokoyama, "Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman's Model Reexamined", Physical Review Letters, vol. 98, no. 18, pp. 187803, 2007. 
  22. D. W. Berreman, "Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal", Physical Review Letters, vol. 28, no. 26, pp. 1683-1686, 1972.