DOI QR코드

DOI QR Code

Proper frequency band as EMG fatigue indices of biceps femoris muscles during treadmill walking

드레트밀 보행시 대퇴이두근의 EMG 근피로지수로서 적당한 주파수 대역

  • Jongchil Won (Department of Biomedical Engineering, Catholic Kwandong University) ;
  • Kiyoung Lee (Department of Biomedical Engineering, Catholic Kwandong University)
  • 원종칠 ;
  • 이기영
  • Received : 2024.04.17
  • Accepted : 2024.05.10
  • Published : 2024.06.29

Abstract

Because of muscle fatigue, motor unit recruitment and firing rates decrease and EMG power spectrum shifts toward lower frequencies as spectral compression which represented by a falling shift in the median frequency. However, changes of this frequency shows relatively less than those of the magnitudes of the low frequency band. This paper aims to examine the moderate ranges of the frequency bands in the existed ones as spectral fatigue indices of biceps femoris muscle. Twelve subjects participate in this experiment, and EMG signals are measured from these muscles during treadmill walking on the speed of 4.5 km/h. ANOVA analysis is used to compare changes of the low and high frequency band with reference to those of median frequency. Experimental results demonstrate that the low frequency band 25-82 Hz and the high frequency band 142-300 Hz could be appropriate for spectral fatigue indices of biceps femoris muscles.

근피로로 인해 운동단위들의 모집과 발화율이 감소하므로 근전도 전력스펙트럼이 낮은 주파수로 전이되는 스펙트럼 압축을 나타나며 이로 인해 중앙주파수가 낮아진다. 그러나 중앙주파수의 변화는 저주파수 대역의 크기 변화보다 상대적으로 미약한 변화를 보인다. 본 연구에서는 이미 제안된 주파수 대역의 범위 중에서 대퇴이두근의 스펙트럼 피로지수로서 적당한 주파수 대역의 범위를 통계적으로 선택하고자 한다. 실험에 참여한 피검자의 수는 12명이며, 4.5 km/h의 속도로 트레드밀 보행시 대퇴이두근의 근전도를 측정하였다. 근전도의 중앙주파수를 기준으로 저역 및 고역 주파수 대역의 크기들을 ANOVA 분석으로 비교하였다. 그 결과 저주파수 대역 25-82Hz과 고주파수 대역 142-300Hz가 대퇴이두근의 근피로지수로서 적당함을 확인하였다.

Keywords

References

  1. Lowery M, Vaughan CL, Nolan P, O'Malley MJ., "Spectral compression of the electromyographic signal due to decreasing muscle fibre conduction velocity", IEEE Trans Rehab Eng Vol. 8, pp. 353-361, 2000. 
  2. Lowery, M., P. Nolan, M. O'Malley, "Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle", Journal of Electromyography and Kinesiology, Vol. 12, pp. 111-118, 2002. 
  3. Beck, T. W., Xin Ye, Nathan P. Wages, "Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity", Journal of Electromyography and Kinesiology, Vol. 25, Issue 3, pp. 451-456, 2015. 
  4. Naik, G. R., Computational Intelligence in Electromyography Analysis, Open Science Journals (DOI: 10.5772/50639), CH. 8, 2012. 
  5. Chan, C.K., Timothy, G.F., Yeow, C.H., "Comparison of mean frequency and median frequency in evaluating muscle fiber type selection in varying gait speed across healthy young adult individuals", Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1725-1728, 2016. 
  6. Moxham, J.; Edward, R.H.; Aubier, M.; De Troy, A.; Farkas, G.; Macklem, P.T.; Rousses, C. Changes in EMG Power Spectrum (high-to-low ratio) with Force Fatigue in Humans. J. Appl. Physiol. Vol. 53, pp. 1094-1099, 1982. 
  7. Dolan, P., Mannion, A. F., Adams, M. A., "Fatigue of the Erector Spinae Muscles: A Quantitative Assessment Using "Frequency Banding" of the Surface Electromyography Signal Dolan", Spine, Vol. 20, No. 2, pp. 149-159, 1995. 
  8. Allison, G.T., Fujiwara, T.,"The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity", Clinical Biomechanics, Vol. 17, Issue 6, pp. 464-469, 2002. 
  9. Yassierli, Nussbaum, M. A., "Utility of traditional and alternative EMG-based measures of fatigue during low-moderate level isometric efforts", Journal of Electromyography and Kinesiology, Vol. 18, pp. 44-53, 2008. 
  10. Lee, S.S., Jang, J.H., Cho, C.O., Kim, D.J., Moon, G.P., Kim, B., Choi, A.R., Lee, K.Y., "Endurance capacity of the biceps brachii muscle using the high-to-low ratio between two signal spectral moments of surface EMG signals during isotonic contractions",Journal of Electric Engineering and Technology, Vol. 12, No. 4, pp. 1641-1648, 2017 
  11. Lee, S., Choi, A., Kim, S., Won J., Lee, K., "Comparison of EMG Activity using Spectrum Indices from Biceps Femoris Muscle during Treadmill Walking", International Journal of Advanced Science and Technology, Vol. 28, No. 3, pp. 33-39, 2019. 
  12. Mundermann, A., James M. Wakeling, Benno M. Nigg, R. Neil Humble, Darren J. Stefanyshyn, "Foot orthoses affect frequency components of muscle activity in the lower extremity", Gait & Posture, Vol. 23, pp. 295-302, 2006. 
  13. Bigland-Ritchie, B., Furbush, R., Woods, J.A., "Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors," Journal of Applied Physiology, Vol. 61, pp. 421-429, 1986. 
  14. Masuda, K., Masuda, T., Sadoyama, T., Inaki, M., Katsuta, S., "Changes in surface EMG parameters during static and dynamic fatiguing contractions," Journal of Electromyography and Kinesiology, Vol. 9, Issue 1, pp. 39-46, 1999. 
  15. Wakeling, J.M., Pascual, A.R., Nigg, B.M., von Tscharner, V., "Surface EMG shows distinct populations of muscle activity when measured during sustained sub maximal exercise," European Journal of Applied Physiology, Vol. 86, pp. 40-47, 2001. 
  16. Cifrek, M., Medved, V., Tonkovic, S., Ostojic, S., "Surface EMG based muscle fatigue evaluation in biomechanics," Clinical Biomechanics, Vol. 24, pp. 327-340, 2009.