DOI QR코드

DOI QR Code

An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes

인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구

  • Jaewon Lee (School of Energy Systems Engineering, Chung-Ang University) ;
  • Seunghwa Yang (Department of Energy Systems Engineering, Chung-Ang University)
  • 이재원 ;
  • 양승화
  • Received : 2024.04.08
  • Accepted : 2024.04.22
  • Published : 2024.04.30

Abstract

In this study, a molecular dynamics simulation study was performed to investigate the size-dependent electroelastic properties of single-walled boron nitride nanotubes(BNNT). To describe the elasticity and polarization of BNNT under mechanical loading, the Tersoff potential model and rigid ion approximation were adopted. For the prediction of piezoelectric constants and Young's modulus of BNNTs, piezoelectric constitutive equations based on the Maxwell's equation were used to calculate the strain-electric displacement and strain-stress relationships. It was found that the piezoelectric constants of BNNTs gradually decreases as the radius of the tubes increases showing a nonnegligible size effect. On the other hand, the elastic constants of the BNNTs showed opposites trends according to the equivalent geometrical assumption of the tubular structures. To establish the structure-property relationships, localized configurational change of the primarily bonded B-N bonded topology was investigated in detail to elucidate the BNNT curvature dependent elasticity.

본 연구에서는 분자동역학 전산모사를 통해 육방정계 단일벽 질화붕소 나노튜브(BNNT)의 반경 변화에 따른 압전탄성 변화를 규명하였다. 질화붕소의 거동을 비교적 잘 모사하는 Tersoff 포텐셜과 기계적 하중인가에 따른 질소 및 붕소원자의 상대변위로 인한 분극의 정량화를 위해 강체 이온 근사를 채택하였다. 선형 압전탄성 구성방정식을 기반으로 각각의 질화붕소에 변형률을 인가하고 이에 따른 전기적 변위와 응력을 산출하여 압전상수와 영률을 각각 예측하였다. 그 결과, BNNT의 압전상수는 반경이 증가함에 따라 점진적으로 감소하는 양상을 보였다. 반면 탄성계수의 경우 불연속적 구조를 가지는 질화붕소를 등가의 연속체 구조로 등가시키는 방법에 따라 증가 또는 감소하는 경향을 보였다. BNNT의 곡률변화에 따른 물성변화를 가상실험에 기반한 경험적 모델로 근사하기 위해 BNNT의 튜브반경-압전탄성물성 간 상관관계식을 제안하였다. 또한 BNNT의 반경변화에 따른 물성을 곡률의 관점에서 설명하기 위해, BNNT와 질화붕소 나노시트(BNNS)의 결합에너지와 탄성변형에 따른 원자간 결합길이 변화가 각각의 구조의 변형에너지 증가에 기여하는 정도를 상호 비교하였다.

Keywords

Acknowledgement

본 논문은 한국수력원자력(주)에서 재원을 부담하여 수행한 연구결과입니다(No. 23-Tech-04).

References

  1. Han, S.A., Lee, J.H., Seung, W., Lee, J., Kim, S.W., and Kim, J.H. "Patchable and Implantable 2D Nanogenerator," Small, Vol. 17, Issue 9, 2021, 1903519. 
  2. Huo, Z., Wei, Y., Wang, Y., Wang, Z.L., and Sun, Q., "Integrated Self-Powered Sensors Based on 2D Material Devices," Advanced Functional Materials, Vol. 32, Issue 41, 2022. 
  3. Arenal, R., Wang, M.S., Xu, Z., Loiseau, A., and Golberg, D., "Young Modulus, Mechanical and Electrical Properties of Isolated Individual and Bundled Single-walled Boron Nitride Nanotubes," Nanotechnology, Vol. 22, No. 26, 2011. 
  4. Mele, E.J., and Kral, P., "Electric Polarization of Heteropolar Nanotubes as a Geometric Phase," Physical Review Letters, Vol. 88, No. 5, 2002. 
  5. Kostoglou, N., Polychronopoulou, K., and Rebholz, C., "Thermal and Chemical Stability of Hexagonal Boron Nitride (h-BN) Nanoplatelets," Vacuum, Vol. 112, 2015, pp. 42-45. 
  6. Terao, T., Bando, Y., Mitome, M., Zhi, C., Tang, C., and Golberg, D. "Thermal Conductivity Improvement of Polymer Films by Catechin-modified Boron Nitride Nanotubes," Journal of Physical Chemistry C, Vol. 113, No. 31, 2009, pp. 13605-13609. 
  7. Salvetti, A., Rossi, L., Iacopetti, P., Li, X., Nitti, S., Pellegrino, T., Mattoli, V., Golberg, D., and Ciofani, G., "In vivo Biocompatibility of Boron Nitride Nanotubes: Effects on Stem Cell Biology and Tissue Regeneration in Planarians," Nanomedicine, Vol. 10, No. 12, 2015. 
  8. Sauti, G., Park, C., Kang, J.H., Kim, J., Harrison, J.S., Smith, M.W., Jordan, K., Lowther, S.E., Lillehei, P.T., and Thibeault, S.A., "Boron Nitride and Boron Nitride Nanotube Materials for Radiation Shielding," US Patent US20130119316 A1,16 May 2013. 
  9. Kang, J.H., Sauti, G., Park, C., Yamakov, V.I., Wise, K.E., Lowther, S.E., Fay, C.C., Thibeault, S.A., and Bryant, R.G., "Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes," ACS Nano, Vol. 9, No. 12, 2015, pp. 11942-11950. 
  10. Kim, K.B., Jang, W., Cho, J.Y., Woo, S.B., Jeon, D.H., Ahn, J.H., Hong, S.D., Koo, H.Y., and Sung, T.H., "Transparent and Flexible Piezoelectric Sensor for Detecting Human Movement with a Boron Nitride Nanosheet (BNNS)," Nano Energy, Vol. 54, 2018, pp. 91-98. 
  11. Lee, J., Lee, S., Zo, M.K., Seo, D., and Kim, J., "Boron Nitride Nanotubes and Its Industrial Applications," Korean Industrial Chemistry, Vol. 20, No. 4, 2017. 
  12. Yang, S., "Piezoelectric and Dielectric Constants of Topologically Defected Boron Nitride Nanotubes," Dalton Transactions, Vol. 52, No. 18, 2023, pp. 5895-5908. 
  13. Zhang, J., "Boron Nitride Honeycombs with Superb and Tunable Piezopotential Properties," Nano Energy, Vol. 41, 2017, pp. 460-468. 
  14. Zhang, J., "Elastocaloric Effect on the Piezoelectric Potential of Boron Nitride Nanotubes," Journal of Physics D: Applied Physics, Vol. 50, No. 41, 2017. 
  15. Kim, I., Roh, H., Yu, J., Jayababu, N., and Kim, D., "Boron Nitride Nanotube-Based Contact Electrification-Assisted Piezoelectric Nanogenerator as a Kinematic Sensor for Detecting the Flexion-Extension Motion of a Robot Finger," ACS Energy Letters, Vol. 5, No. 5, 2020, 1577-1585. 
  16. Choi, S., and Yang, S., "Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites," Composites Research, Vol. 30, No. 4, 2017, pp. 247-253. 
  17. Duerloo, K.A.N., Ong, M.T., and Reed, E.J., "Intrinsic Piezoelectricity in Two-dimensional Materials," Journal of Physical Chemistry Letters, Vol. 3, No. 19, 2012, pp. 2871-2876. 
  18. Tersoff, J., "Modeling Solid-state Chemistry: Interatomic Potentials for Multicomponent Systems," Physical Review B, Vol. 39, No. 8, 1989. 
  19. Guo, G.Y., Ishibashi, S., Tamura, T., and Terakura, K., "Static dielectric Response and Born Effective Charge of BN Nanotubes from ab Initio Finite Electric Field Calculations," Physical Review B - Condensed Matter and Materials Physics, Vol. 75, No. 24, 2007. 
  20. Donald A., McQuarrie, Statistical Mechanics, University of Science Books, 2000. 
  21. Yang, S., Yu, S., and Cho, M., "A Study on the Development of Multi-scale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites," Journal of the Computational Structural Engineering Institute of Korea, Vol. 22, No. 4, 2009, pp. 343-348. 
  22. Accelrys Inc. San Francisco. 
  23. Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, Vol. 117, No. 1, 1995, pp. 1-19.