DOI QR코드

DOI QR Code

Moisture Absorption and Strengths of Composite Skins cured on the Close Heated Mold

폐쇄형 가열 금형에서 경화된 복합재 외피의 수분흡수 및 강도특성

  • Kyung-Su Kim (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Hyeon-Seok Choe (Department of Composite Structure & System, Korea Institute of Materials Science) ;
  • Byeong-Su Kwak (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Jin-Hwe Kweon (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • 김경수 ;
  • 최현석 ;
  • 곽병수 ;
  • 권진회
  • Received : 2023.12.11
  • Accepted : 2024.04.21
  • Published : 2024.04.30

Abstract

The moisture absorption rate and structural strength changes of oven-cured composite skin based on closed molds were studied. Moisture absorption was performed on specimens with and without filler applied. The specimens were exposed to moisture for up to 231 days. Tensile and compression tests were conducted with and without filler application. As a result of the test, the moisture absorption rates of the tensile and compressive specimens without filler were 2.4 and 0.3% higher, respectively, than those with the filler applied. The tensile and compressive strengths of the specimen without filler applied were average 305 MPa and 139 MPa, respectively, and the tensile and compressive strengths of the specimen with filler applied were 313 MPa and 166 MPa, respectively, appeared high.

폐쇄 금형 기반의 오븐 경화된 복합재 스킨에 대한 수분 흡수율 및 구조강도 변화를 연구하였다. 수분 함침은 필러를 도포한 시편과 도포하지 않은 시편에 대해 수행하였으며, 시편은 최대 231일 동안 수분에 노출하였다. 구조시험은 필러 도포 유무를 구분하여 인장 및 압축시험을 수행하였다. 시험 결과, 필러를 도포하지 않은 인장 및 압축시편의 수분 흡수율이 도포한 시편에 비해 각각 2.4, 0.3% 높게 나타났다. 필러를 도포하지 않은 시편의 평균 인장 강도는 305 MPa 압축강도는 139 MPa, 필러를 도포한 시편의 평균 313 MPa, 압축강도는 166 MPa로, 필러를 도포한 시편의 인장 및 압축강도가 높게 나타났다.

Keywords

References

  1. Strong, A.B., Fundamentals of Composites Manufacturing: Materials, Methods and Applications, Second Edition, Society of Manufacturing Engineers, Michigan, USA, 2008. 
  2. Kim, Y.H., Kim, K.J., Jo, Y.D., Moon, K.M., and Han, J.W., "Effect of Moisture Absorption on the Fiber-reinforced Composite Materials," Composite Research, Vol. 21, No. 2, 2008, pp. 1-7. 
  3. Lee, H.K., Kweon, H., Park, S.Y., Choi, W.J., Choi, H.S., Lee, S.C., and Jeong, G.M., "Property Evaluation of Aerospace-grade Composite Laminate subjected to Moisture Absorption Environments," Proceeding of the Korean Society for Aeronautical and Space Sciences, Gyeongju, Korea, Nov. 2011, pp. 821-826. 
  4. Loos, A.C., and Springer, G.S., "Moisture Absorption of GraphiteEpoxy 825 Composites Immersed in Liquids and in Humid Air," Journal of Composite Materials, Vol. 13, 1979, pp. 131-147. 
  5. Yoon, H.S., An, W.J., Kim, M.S., Hong, S.J., Song, M.H., and Choi, J.H., "Analysis of Composite Microporosity according to Autoclave Vacuum Bag Processing Conditions," Composite Research, Vol. 32, No. 5, 2019, pp. 199-205. 
  6. Judd, N.C.W., "Absorption of Water into Carbon Fibre Composites," British Polymer Journal, Vol. 9, No. 1, 1977, pp. 36-40. 
  7. Bismarck, A., Hofmeier, M., and Domer, G., "Effect of Hot Water Immersion on the Performance of Carbon Reinforced Unidirectional Poly(ether ether ketone) (PEEK) Composites: Stress Rupture under End-loaded Bending," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 2, 2007, pp. 407-426. 
  8. Kim, H.Y., Park, Y.H., You, Y.J., and Moon, C.K., "Short-term Durability Test for GFRP Rods under Various Environmental Conditions," Composite Structures, Vol. 83, No. 1, 2008, pp. 37-47. 
  9. Yang, H.J., Jeong, M.G., Kweon, J.H., and Choi, J.H., "Strength of Composite Single-lap Bonded Joints with Different Saltwater Moisture Contents," Composite Research, Vol. 24, No. 4, 2011, pp. 48-54. 
  10. Song, M.G., Kweon, J.H., Choi, J.H., Kim, H.J., Song, M.H., Shin, S.J., and Byun, J.H., "Hygrothermal Effect on the Strength of Carbon/Epoxy Composite Single-Lap Bonded Joints," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 38, No. 2, 2010, pp. 119-128. 
  11. Seo, S.H., Lee, D.B., and Moon, C.K., "A Study on Degradation in the Moisture Environment and Recovery of Carbon Fiber Reinforced Composites," Composite Research, Vol. 17, No. 3, 2004, pp. 8-14. 
  12. Kim, W.K., and Moon, C.K., "Effect of the Moisture Environment on the Mechanical Properties of Carbon Fiber Laminates," Journal of Ocean Engineering and Technology, Vol. 13, No. 4, 1999, pp. 63-74. 
  13. Moon, C.K., Choi, H.L., and Lee, B., "Influence of Moisture Absorption on the Mechanical properties in the Laminates Composites," Journal of Ocean Engineering and Technology, Vol. 14, No. 3, 2000, pp. 90-99. 
  14. ASTM D6484, Standard Test Method for Open-Hole Compressive Strength of Polymer Matrix Composite Laminates. 
  15. ASTM D5766. Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates.