DOI QR코드

DOI QR Code

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ji Hyeon Hwang (Department of Optometry, Seoul National University of Science and Technology) ;
  • Byung Joon Choi (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2024.03.11
  • 심사 : 2024.05.29
  • 발행 : 2024.06.27

초록

The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.

키워드

과제정보

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

참고문헌

  1. W. J. Jeon, J. Mater. Res., 35, 775 (2020).
  2. S. H. Cha, C. H. An, S. H. Kim, D. G. Kim, D. S. Kwon, S. T. Cho and C. S. Hwang, ECS Meet. Abstr., MA2018-01, 2560 (2018).
  3. J. J. Chung, S. J. Kim and J. W. Shim, IEEE Trans. Electron Devices, 70, 4315 (2023).
  4. W. J. Jeon, S. H. Rha, W. K. Lee, Y. W. Yoo, C. H. An, K. H. Jung, S. K. Kim and C. S. Hwang, ACS Appl. Mater. Interfaces, 6, 7910 (2014).
  5. J. P. Niemela, G. Marin and M. Karppinen, Semicond. Sci. Technol., 32, 093005 (2017).
  6. B. G. Kim, Y. S. Choi, D. H. Lee, Y. H. Byun, C. W. Jung and H. T. Jeon, ECS J. Solid State Sci. Technol., 10, 083006 (2021).
  7. H. J. Kim and I. K. Oh, Jpn. J. Appl. Phys., 53, 03DA01 (2014).
  8. W. Chiappim, G. E. Testoni, A. C. O. C. Doria, R. S. Pessoa, M. A. Fraga, N. K. A. M. Galvao, K. G. Grigorov, L. Vieira and H. S. Maciel, Nanotechnology, 27, 305701 (2016).
  9. N. G. Kubala, P. C. Rowlette and C. A. Wolden, J. Phys. Chem. C, 113, 16307 (2009).
  10. H. J. Jung, J. H. Han, E. A. Jung, B. K. Park, J. H. Hwang, S. U. Son, C. G. Kim, T. M. Chung and K. S. An, Chem. Mater., 26, 7083 (2014).
  11. S. K. Kim, W. D. Kim, K. M. Kim, C. S. Hwang and J. H. Jeong, Appl. Phys. Lett., 85, 4112 (2004).
  12. K. Frohlich, J. Aarik, M. Tapajna, A. Rosova, A. Aidla, E. Dobrocka and K. Huskova, J. Vac. Sci. Technol., B, 27, 266 (2009).
  13. H. Y. Lee, J. H. Han and B. J. Choi, J. Vac. Sci. Technol., A, 42, 022405 (2024).
  14. Y. Murakami, J. Li and T. Shimoda, Mater. Lett., 152, 121 (2015).
  15. B. Hudec, K.Husekova, A. Rosova, J. Soltys, R. Rammula, A. Kasikov, T. Uustare, M. Micusik, M. Omastova, J. Aarik and K. Frohlich, J. Phys. D: Appl. Phys., 46, 385304 (2013).
  16. S. Gupta, M. Sinha, R. Dhawon, R. Jangir, A. Bose, P. Gupta, M. K. Swami and M. H. Modi, Thin Solid Films, 764, 139606 (2023).
  17. E. V. Jelenkovic and K. Y. Tong, J. Vac. Sci. Technol., B, 22, 2319 (2004).
  18. J. Aarik, T. Arroval, L. Aarik, R. Rammula, A. Kasikov, H. Mandar, B. Hudec, K. Husekova and K. Frohlich, J. Cryst. Growth, 382, 61 (2013).
  19. V. Miikkulainen, M. Leskela, M. Ritala and R. L. Puurunen, J. Appl. Phys., 113, 021301 (2013).
  20. W. Chiappim, G. E. Testoni, J. S. B. de Lima, H. S. Medeiros, R. S. Pessoa, K. G. Grigorov, L. Vieira and H. S. Maciel, Braz. J. Phys., 46, 56 (2016).
  21. W. Chiappim, M. A. Fraga, H. S. Maciel and R. S. Pessoa, Front. Mech. Eng., 6, 551085 (2020).
  22. F. J. Maier, M. Schneider, J. Schrattenholzer and U. Schmid, J. Phys.: Conf. Ser., 1837, 012009 (2021).
  23. P. Soundarrajan, K. Sankarasubramanian, K. Sethuraman and K. Ramamurthi, CrystEngComm, 16, 8756 (2014).
  24. J. Li, H. Cui, Z. Song, N. Wei and J. Tian, Appl. Surf. Sci., 396, 1539 (2017).
  25. P. Lazic and B. N. J. Persson, Europhys. Lett., 91, 46003 (2010).
  26. G. Song, Y. Wang and D. Q. Tan, IET Nanodielectrics, 5, 1 (2022).
  27. K. Frohlich, M. Tapajna, A. Rosova, E. Dobrocka, K. Husekova, J. Aarik and A. Aidla, Electrochem. Solid State Lett., 11, G19 (2008).
  28. W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi and K. H. Oh, Thin Solid Films, 237, 105 (1994).
  29. International Roadmap for Devices and Systems (IRDS) 2023 Edition: Beyond CMOS. Retrieved March 5, 2024 from https://irds.ieee.org/editions/2023
  30. K. Frohlich, B. Hudec, M. Tapajna, K. Husekova, A. Rosova, P. Elias, J. Aarik, R. Rammula, A. Kasikov, T. Arroval, L. Aarik, K. Murakami, M. Rommel and A. J. Bauer, ECS Trans., 50, 79 (2013).