DOI QR코드

DOI QR Code

북한 석탄 자원의 부존 및 활용현황과 연구동향

Situation of Geological Occurrences and Utilization, and Research Trends of North Korean Coal Resources

  • 고상모 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터 ) ;
  • 이범한 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터 ) ;
  • Sang-Mo Koh (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bum Han Lee (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Otgon-Erdene Davaasuren (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.01.30
  • 심사 : 2024.03.21
  • 발행 : 2024.06.28

초록

북한에서 석탄은 전력 생산은 물론 산업용, 가정상업용 등 수송부문을 제외한 모든 에너지 수요부문에서 중추적 역할을 담당하는 주종에너지원이다. 북한은 전체 전력의 절반 정도를 석탄발전을 통해 생산하며, 모든 산업체의 열과 동력을 석탄에 의존하고 있다. 아울러 장기간 동안 대중 수출품목으로서 외화 획득에 지대한 기여를 하여 왔다. 그러나 1980년대 이래로 장기간 동안 무분별한 채탄으로 인해 대부분의 광산은 심부화가 급속도로 진행 되었고 광산설비의 노후화, 신규설비의 투자부족, 유류와 전력의 부족, 자재 공급 곤란, 잦은 수해로 인한 피해까지 겹치면서 1980년대 후반부터 석탄 생산량은 뚜렷하게 감소 추세를 보이고 있다. 북한의 석탄광상은 원생대로부터 신생대에 이르기까지 다양한 지질시대 지층에 배태되어 있으나, 가장 중요한 탄전지대는 평남분지 내에 분포하는 후기 고생대 퇴적층인 평안초군층의 립석주층 및 사동주층 함탄층이며, 이들은 평남북부탄전과 평남남부탄전을 이룬다. 북한 석탄의 약 90% 이상을 이 탄전에서 생산한다. 북한에서 석탄 분류는 탄화 정도에 따라 분류한 국제적 분류(토탄, 갈탄, 아역청탄, 역청탄과 무연탄)와는 다르게 산업적 견지에서 유연탄, 무연탄, 초무연탄으로 분류하고, 유연탄은 수탄(아갈탄), 갈탄, 역청탄으로 분류하며, 발열량 기준으로 고열탄, 보통탄, 저열탄으로 분류하기도 한다. 북한에서 지칭하는 초무연탄은 우리나라 뿐만 아니라 세계적으로도 분류되지 않은 석탄 등급이며, 북한에서만 유일하게 사용하고 있는 부니질 저급 석탄이다. 이 기고에서는 석탄의 국제적 분류와 북한 분류를 비교하고, 북한 석탄의 지질학적 부존특성 및 부존량, 활용분야 및 연구동향을 파악하여 북한 석탄 자원을 보다 정확하고 심도 깊게 이해할 수 있는 내용으로 구성하고자 하였다. 이 연구는 남북 광물자원 협력이 가시화 되었을 때 석탄과 관련된 과학적 및 산업적 협력 아젠다를 준비하는데 지침으로 활용 될 수 있을 것이다.

North Korea relies heavily on coal as the primary energy source, playing an important role in all energy demand sectors except for the transportation sector. Approximately half of the total electricity is generated through coal-fired power plants, and coal is used to produce heat and power for all industrial facilities. Furthermore, coal has been a significant contributor to earning foreign currency through long-term exports to China. Nevertheless, since the 1980s, indiscriminate mining activities have led to rapid depletion of coal production in most coal mines. Aging mine facilities, lack of investment in new equipment, shortages of fuel and electricity, difficulties in material supply, and frequent damage from flooding have collectively contributed to a noticeable decline in coal production since the late 1980s. North Korea's coal deposits are distributed in various geological formations from the Proterozoic to the Cenozoic, but the most critical coal-bearing formations are Ripsok and Sadong formations distributed in the Pyeongnam Basin of the Late Paleozoic from Carboniferous to Permian, which are called as Pyeongnam North and South Coal Fields. Over 90% of North Korea's coal is produced in these coal fields. The classification of coal in North Korea differs from the international classification based on coalification (peat, lignite, sub-bituminous coal, bituminous coal, and anthracite). North Korean classification based on industrial aspect is classified into bituminous coal, anthracite, and low-grade coal (Chomuyeontan). Based on the energy factor, it is classified into high-calorie coal, medium calorie coal, and low-calorie coal. In North Korea, the term "Chomuyeontan" refers to a type of coal that is not classified globally and is unique to North Korea. It is a low-grade coal exclusively used in North Korea and is not found or used in any other country worldwide. This article compares North Korea's coal classification and the international coal classification of coal and provides insights into the geological characteristics, reserves, utilization, and research trends of North Korean coal resources. This study could serve as a guide for preparing scientific and industrial agendas related to coal collaboration between North Korea and South Korea.

키워드

과제정보

이 논문은 과학기술정보통신부에서 지원한 한국지질자원연구원 기본사업(GP2023-004)으로 연구가 수행되었습니다. 유익한 제언을 해 주신 두분의 심사위원님들께 감사를 표합니다.

참고문헌

  1. Averitt, P. (1967) Coal Resources of the United States. Geological Survey Bulletin 1275, 166p.
  2. Brian, H.B. and Marty, W.I. (2008) Coal characteristics. CCTR Basic Facts File #8, The Energy Center, Purdue University. http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=enUS&mkt=en-US&FORM=CVRE8.
  3. Choe, B.S., Heo, D.H., Yun, J.S., Sin, Y.H. and Jo, S.J. (2011) The Geological Series of North Korea (Metallic Mineral Resources), v.6, Industrial Publishing House, Pyeongyang, 504p.
  4. Chae, M.H. et al. (2012) The Geological Series of North Korea (Fuel Mineral Resources), v.9, Industrial Publishing House, Pyeongyang, 237p.
  5. Choe, G.C. (2011) Coal mining process management using GIS technology. Coal Industry, v.329(3), p.28.
  6. Choe, M.H. (2010) Coal Geology (for university student). Publishing House of the Higher Education Books, Pyeongyang, 191p.
  7. Choe, M.H. and Hwang, G.C. (1996) Characteristics and uses of anthracitic low grade coal in Sinseong district. Coal Industry, v.266(3), p.30-31.
  8. Coal Industry (1993) Introduction of a scientific meeting in the coal industry. Coal Industry, v.247(2), p.24.
  9. Coal Industry (1995) Introduction of technology-intensive lectures in the coal industry. Coal Industry, v.258(1), p.16.
  10. Coal Industry (2002) Coal liquefaction technology, Coal Industry, v.291(1), p.25.
  11. Coal Industry (2003) Development technology to produce condensed milk from coal. Coal Industry, v.295(1), p.32.
  12. Coal Industry (2004) Water and coal mixed fuel. Coal Industry, v.300(2), p.23.
  13. Coal Industry (2005) Classification of coal. Coal Industry, Coal Industry, v.304(2), p.24.
  14. Coal Industry (2005) The 20th Central Science and Technology Festival (Coal section). Coal Industry, v.305(3), p.24.
  15. Coal Industry (2007) Fertilizer production using coal waste rock. Coal Industry, v.313(3), p.15.
  16. Coal Industry (2007) Methods for the measurement of a coal resource density. Coal Industry, v.314(4), p.5.
  17. Dai, S., Zheng X., Wang, X., Finkelman, R.B., Jiang, Y., Ren, D., Yan, X. and Zhou, Y. (2018) Stone coal in China: a review. International Geology Review, v.60, p.736-753. https://doi.org/10.1080/00206814.2017.1378131.
  18. Gavshin, V.M. and Sozinov, N.A. (1991) Geochemistry of the upper Precambrian and lower Cambrian black shales within the Pyongnam Basin. Novosibirsk: Nauka, p.47-51.
  19. Gorden, H.W., Thomas, M.K., Deverreux, C. and William, C.C. (1983) Coal resources classification system of the U.S. Geological Survey. USGS Geological Circular 891, 65p.
  20. Ha, B.N. and Pak, T.S. (2014) Effect of the surface area of combustion ratio of manufactured coal briquettes by low grade coal. Coal Industry, v.342(4), p.17.
  21. Han, C.S. and Ri, H.S. (2014) Uses as coal briquette by the addition of combustion additives in coal waste. Coal Industry, v.339(1), p.29.
  22. Han, G.S. and Ok, Y.P. (2008) Computer-based mining process design. Coal Industry, v.318(4). p.6.
  23. Han, S.G. (2008) Coal waste rock thermal power plant. Coal Industry, v.345(3), p.31.
  24. Han, S.G. (2011) Application of information technology in the mining industry. Coal Industry, v.329(3), p.32.
  25. I-RENK (2024) Information System for Resources of North Korea. SONOSA.
  26. Ji, B.M. (2013) North Korean great encyclopedia. Science Encyclopedia Publishing House, Pyeongyang, 664p.
  27. Jo, C.M. (2015) Development trends of coal liquefaction technology, Coal Industry, v.317(3), p.31.
  28. Karen, D.K., Scott, C.T., Polyak, D.E. and Kimball, B.E. (2017) Vanadium: Chapter U of Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. Professional Paper 1802-U. https://doi.org/10.3133/pp1802U.
  29. Kim, C.N. (2009) Selection of mining area based on GIS. Coal Industry, v.319(1), p.27.
  30. Kim, J.H. (2009) Coal direct liquefaction technology. Coal Industry, v.321(3), p.19.
  31. Kim, K.W., Kim, G.Y., Kim, M.K. et al. (2015) The North Korea's Industry, Korea Development Bank.
  32. Kim, I.S. (1981) A collection of Kim Il-Sung's writings (Worker's Party of Korea Publishing House, Pyeongyang.
  33. Kim, J.H., Park, J.K. and Koh, S.M. (1995) Geology and Mineral Deposits on the Ogcheon Group. KIGAM KR-95(B)-4. 211p.
  34. Kim, J.Y. and Choe, M.H. (2014) Geology of North Korea (for university student). Publishing House of the Education Books, Pyeongyang, 248p.
  35. Kim, M.N. (1992) Manufacturing of coal briquettes using low grade coal. Coal Industry, v.244(5), p.9.
  36. Kim, S.N. and Choe, G.H. (2016) Interpretation of thermodynamic reaction process of the low grade coal. Coal Industry, v.349(3), p.23.
  37. Kim, Y.M. et al. (1988) The Complete Works of the Korean Geography (Geology and Mineral Resources). Publishing House of the Education Books, Pyeongyang, 688p.
  38. Koh, S.M. (2018) Distribution of coal deposits of North Korea. unpublished.
  39. Koh, S.M., Lee, G., You, B.W., Kim, N.H. and Lee, B.H. (2019) Geology and Mineralization of the Northern Korean Peninsula. KIGAM, 322p.
  40. Mun, B.I. and Hong, S.J. (2015) Small ignition briquette arrangement process using a computer control system. Coal Industry, v.343(1), p.30.
  41. Paek, Y. and Kim, G.C. (2015) Partial liquefaction technology process of lignite in the Anju coal field. Coal Industry, v.345(1), p.30.
  42. Pak, C.W., Park, S. W., Hyun, J.S. and Shon, E.K. (1983) A study on the optical characteristics of anthracite coals. Journal of the Korean Institute of Chemical Engineers, v.31, p.852-857.
  43. Pak, H.I. (2015) Mining conditions evaluation program. Coal Industry, v.345(3), p.24.
  44. Pak, J.H. (1991) Some properties of the coal separation and utilization of the low grade coal in North Korea. Coal Industry, v.234(1), p.38-40.
  45. Pak, S.W. (1981) The application of coal petrography, The Journal of the Geological Society of Korea, v.17, p.157-160.
  46. Pak, Y.G. and Im, H.E (1990) Method for manufacturing beeswax from coal. Coal Industry, v.231(4), p.44-45.
  47. Pak, Y.J. and Ri, J.H. (2016) Uses as resident fuels of the low grade coal. Coal Industry, v.352(2), p.26.
  48. Ri, J.N., Ryu, J.R., Paek, Y.S., Ham, P.S. and Sin, S.G. (1990) Geological Constitution of Korea (1). Industrial Publishing House, Pyeongyang, 363p.
  49. Ri, O.I. and Kim, C.I. (2015) 3D modeling of mining space by mine. Coal Industry, v.344(2), p.6.
  50. Shabudeen, S. (2010) Fuels and combustion (Chapter 4). https://www.researchgate.net/publication/265602602.
  51. Shin, D.B., Kim, S.J. and Choe, M.N. (2012) Geochemical characteristics of U-bearing black phyliite of the Ogcheon Group. Mineralogical Society of Korea, Mineral and Industry, v.25, p.19-28.
  52. Sin, S.D. and Pak, J.H. (1993) Production of low-speed lubricating oil by low temperature lignocellular tar. Coal Industry, v.251(6), p.40.