DOI QR코드

DOI QR Code

Understanding the Impact of Perceived Empathy on Consumer Preferences for Human and AI Agents in Healthcare and Financial Services

의료 및 금융 서비스에서 인간-AI 에이전트 선호도에 소비자가 지각하는 공감 능력의 중요성이 미치는 영향

  • Received : 2024.04.25
  • Accepted : 2024.06.06
  • Published : 2024.06.30

Abstract

This study explores variations in preferences for human and AI agents within the medical and financial services. Study 1 investigates whether there are preferential disparities between human and AI agents across these service domains. It finds that human agents are favored over AI agents in medical services, while AI agents receive greater preference in the financial services. Study 2 delves into the underlying reasons for the preference differentials between human and AI agents by assessing the significance of certain capabilities as perceived by users in each domain. The findings reveal a mediating role of perceived empathy importance in the effect of service domains on human-AI preference. Furthermore, perceived empathy is deemed a more critical capability by users for preferring human over AI agents across both service domains compared to other capabilities such as experience and agency. This research is noteworthy for elucidating the variances in preferences for human and AI agents across medical and financial services and the rationale behind these differences. It enhances our theoretical comprehension of the pivotal factors influencing preferences for human and AI agents, underscoring the significance of human experiential capabilities like empathy.

본 연구는 의료 및 금융 서비스 영역에 대해 인간과 AI 에이전트에 대한 소비자의 선호도가 어떻게 달라지는지 확인하고자 하였다. 연구 1은 각 서비스 영역에서 인간과 AI 에이전트 중 소비자가 선호하는 정도에 차이가 있는지 확인하였으며, 그 결과, 의료 서비스에 대해서는 AI 에이전트보다 인간 에이전트가 더 선호되고, 금융 서비스에서는 이와 반대로, 인간 에이전트가 보다 AI 에이전트가 더 선호되는 결과가 나타났다. 연구 2는 의료 및 금융 서비스 영역에 대한 인간-AI 에이전트 선호도가 달라지는 이유를 각 서비스 영역별로 소비자가 지각하는 특정 능력(예: 지각된 공감 능력, 경험치, 주체성)의 중요성의 차이로 설명할 수 있는지 확인하고자 하였다. 그 결과, 서비스 영역에 따른 인간-AI 에이전트 선호도 경향이 소비자가 지각하는 공감 능력의 중요성에 의해 매개된다는 것을 확인하였다. 또한, 지각된 공감 능력이 다른 능력들(경험치, 주체성)에 비해, 두 서비스 영역 간 인간-AI 에이전트 선호를 결정하는 데 더 중요한 역할을 하는 것을 확인하였다. 본 연구는 의료 및 금융 서비스 영역에 대해서 인간과 AI 에이전트에 대한 소비자의 선호도 차이와 그 이유를 확인한 연구라는 점에서 의의가 있다. 이는 인간과 AI 에이전트 선호도에 영향을 미치는 잠재적으로 중요한 요인들에 대한 이론적 이해를 확장하고, 서비스 영역에 따라, 지각된 공감 능력과 같이 인간의 경험적 역량이 인간과 AI 에이전트 선호도를 결정하는데 중요한 역할을 할 수 있다는 점을 강조한다.

Keywords

References

  1. 김상우, 김광호, 장영혜 (2009). 의사의 전문성과 커뮤니케이션 능력이 환자가 지각하는 신뢰, 가치 및 만족에 미치는 영향. 마케팅논집, 17(1), 115-140.
  2. 김시내, 손영우 (2020). 인공지능 기술의 수용성에 미치는 공정세상믿음의 효과. 한국심리학회지: 일반, 39(4), 517-542. https://doi.org/10.22257/KJP.2020.12.39.4.517
  3. 류정원, 손권상, 윤혜선 (2023). EU GDPR 위반사례 토픽 분석 및 시사점 연구: 금융, 의료, 산업 및 상거래 부문을 중심으로. 한국전자거래학회지, 28(3), 1-25.
  4. 문건두, 김경재 (2023). 소셜 네트워크 분석과 토픽 모델링을 활용한 설명 가능 인공지능 연구 동향 분석. Journal of Information Technology Applications & Management, 30(1), 53-70.
  5. 유우새, 정창원 (2024). AI 리터러시가 인공지능 의존에 미치는 영향: 주관적 규범과 회복탄력성의 병력다중매개효과를 중심으로. 커뮤니케이션디자인학연구, 86, 362-377.
  6. 이은지, 이종민, 성용준 (2019). 사용자 특성과 기기 장치에 따른 가상개인비서 만족도: 기능적, 정서적 만족도 중심으로. 한국심리학회지: 소비자-광고, 20(1), 31-54.
  7. Arkes, H. R., Shaffer, V. A., & Medow, M. A. (2007). Patients derogate physicians who use a computer-assisted diagnostic aid. Medical Decision Making, 27(2), 189-202. https://doi.org/10.1177/0272989X06297391
  8. Baird, A., & Maruping, L. M. (2021). The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts. MIS Quarterly, 45(1), 315-341. https://doi.org/10.25300/MISQ/2021/15882
  9. Belanche, D., Casalo, L. V., & Flavian, C. (2019). Artificial intelligence in fintech: Understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411-1430. https://doi.org/10.1108/IMDS-08-2018-0368
  10. Berger, B., Adam, M., Ruhr, A., & Benlian, A. (2020). Watch me improve-algorithm aversion and demonstrating the ability to learn. Business & Information Systems Engineering, 63(1), 55-68.
  11. Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21-34. https://doi.org/10.1016/j.cognition.2018.08.003
  12. Bogert, E., Schecter, A., & Watson, R. T. (2021). Humans rely more on algorithms than social influence as a task becomes more difficult. Scientific Reports, 11(1), 8028.
  13. Bonnefon, J. F., & Rahwan, I. (2020). Machine thinking, fast and slow. Trends in Cognitive Sciences, 24(12), 1019-1027. https://doi.org/10.1016/j.tics.2020.09.007
  14. Bove, L. L. (2019). Empathy for service: Benefits, unintended consequences, and future research agenda. Journal of Services Marketing, 33(1), 31-43. https://doi.org/10.1108/JSM-10-2018-0289
  15. Burleigh, T. J., Schoenherr, J. R., & Lacroix, G. L. (2013). Does the uncanny valley exist? An empirical test of the relationship between eeriness and the human likeness of digitally created faces. Computers in Human Behavior, 29(3), 759-771. https://doi.org/10.1016/j.chb.2012.11.021
  16. Burton, J. W., Stein, M., & Jensen, T. B. (2019). A systematic review of algorithm aversion in augmented decision making. Journal of Behavioral Decision Making, 33(2), 220-239. https://doi.org/10.1002/bdm.2155
  17. Castelo, N. (2019). Blurring the line between human and machine: Marketing artificial intelligence. ProQuest Dissertations & Theses, Columbia University, NY.
  18. Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809-825.
  19. Clerwall, C. (2014). Enter the robot journalist: Users' perceptions of automated content. Journalism Practice, 8(5), 519-531. https://doi.org/10.1080/17512786.2014.883116
  20. Diab, D. L., Pui, S. Y., Yankelevich, M., & Highhouse, S. (2011). Lay perceptions of selection decision aids in US and non-us samples. International Journal of Selection and Assessment, 19(2), 209-216. https://doi.org/10.1111/j.1468-2389.2011.00548.x
  21. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114-126. https://doi.org/10.1037/xge0000033
  22. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Management Science, 64(3), 1155-1170. https://doi.org/10.1287/mnsc.2016.2643
  23. Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role of trust in automation reliance. International Journal of Human-Computer Studies, 58(6), 697-718.
  24. Eastwood, J., Snook, B., & Luther, K. (2011). What people want from their professionals: Attitudes toward decision-making strategies. Journal of Behavioral Decision Making, 25(5), 458-468. https://doi.org/10.1002/bdm.741
  25. Edwards, C., Edwards, A., Spence, P. R., & Shelton, A. K. (2014). Is that a bot running the social media feed? Testing the differences in perceptions of communication quality for a human agent and a bot agent on Twitter. Computers in Human Behavior, 33, 372-376. https://doi.org/10.1016/j.chb.2013.08.013
  26. Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz, S. J., Lermer, E., Coughlin, J. F., Guttag, J. V., Colak, E., & Ghassemi, M. (2021). Do as AI say: Susceptibility in deployment of clinical decision-aids. Npj Digital Medicine, 4(1), 31.
  27. Glejser, H., & Heyndels, B. (2001). Efficiency and inefficiency in the ranking in competitions: The case of the Queen Elisabeth Music Contest. Journal of Cultural Economics, 25(2), 109-129.
  28. Garvey, A. M., Kim, T., & Duhachek, A. (2021). Bad news? Send an AI. good news? Send a human. Journal of Marketing, 87(1), 10-25. https://doi.org/10.1177/00222429211066972
  29. Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science, 315(5812), 619-619. https://doi.org/10.1126/science.1134475
  30. Gray, K., & Wegner, D. M. (2012). Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition, 125(1), 125-130. https://doi.org/10.1016/j.cognition.2012.06.007
  31. Hankins, E., Nettel, P. F., Martinescu, L., Grau, G., & Rahim, S. (2023). Government AI readiness index 2023 (S. Rahim, Ed.; pp. 1-53). Oxford Insights.
  32. Harris-Watson, A. M., Larson, L. E., Lauharatanahirun, N., DeChurch, L. A., & Contractor, N. S. (2023). Social perception in human-AI teams: Warmth and competence predict receptivity to AI teammates. Computers in Human Behavior, 145, 107765.
  33. Haslam, N. (2006). Dehumanization: An integrative review. Personality and Social Psychology Review, 10(3), 252-264. https://doi.org/10.1207/s15327957pspr1003_4
  34. Haslam, N. (2007). Humanising medical practice: The role of empathy. Medical Journal of Australia, 187(7), 381-382. https://doi.org/10.5694/j.1326-5377.2007.tb01305.x
  35. Haslam, N., Bain, P., Douge, L., Lee, M., & Bastian, B. (2005). More human than you: Attributing humanness to self and others. Journal of Personality and Social Psychology, 89(6), 937-950. https://doi.org/10.1037/0022-3514.89.6.937
  36. Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed). 370 Seventh Ave, New York: Guilford Publications.
  37. Hong, J.-W., Cruz, I., & Williams, D. (2021). AI, you can drive my car: How we evaluate human drivers vs. self-driving cars. Computers in Human Behavior, 125, 106944.
  38. Hu, B., Mao, Y., & Kim, K. J. (2023). How social anxiety leads to problematic use of conversational AI: The roles of loneliness, rumination, and mind perception. Computers in Human Behavior, 145, 107760.
  39. Huang, L., Lu, Z., & Rajagopal, P. (2022). Numbers not lives: AI dehumanization undermines COVID-19 preventive intentions. Journal of the Association for Consumer Research, 7(1), 63-71. https://doi.org/10.1086/711839
  40. Jago, A. S. (2019). Algorithms and authenticity. Academy of Management Discoveries, 5(1), 38-56. https://doi.org/10.5465/amd.2017.0002
  41. Jo, M.-S. (2000). Controlling social-desirability bias via method factors of direct and indirect questioning in structural equation models. Psychology and Marketing, 17(2), 137-148. https://doi.org/10.1002/(SICI)1520-6793(200002)17:2<137::AID-MAR5>3.0.CO;2-V
  42. Jones, N. (2017). How machine learning could help to improve climate forecasts. Nature, 548(7668), 379-379. https://doi.org/10.1038/548379a
  43. Jung, J., Song, H., Kim, Y., Im, H., & Oh, S. (2017). Intrusion of software robots into journalism: The public's and journalists' perceptions of news written by algorithms and human journalists. Computers in Human Behavior, 71, 291-298. https://doi.org/10.1016/j.chb.2017.02.022
  44. Jussupow, E., Benbasat, I., & Heinzl, A. (2020). Why are we averse towards algorithms? A comprehensive literature review on algorithm aversion. In Proceedings of the 28th European Conference on Information Systems (ECIS), 168, 1-16.
  45. Jussupow, E., Spohrer, K., Heinzl, A., & Gawlitza, J. (2021). Augmenting medical diagnosis decisions? An investigation into physicians' decision-making process with artificial intelligence. Information Systems Research, 32(3), 713-735. https://doi.org/10.1287/isre.2020.0980
  46. Kerasidou, A., & Horn, R. (2016). Making space for empathy: Supporting doctors in the emotional labour of clinical care. BMC Medical Ethics, 17(1), 1-5. https://doi.org/10.1186/s12910-015-0083-z
  47. Khan, H., Sararueangpong, P., Mathmann, F., & Wang, D. (2023). Consumers' promotion focus mitigates the negative effects of chatbots on purchase likelihood. Journal of Consumer Behaviour, 23(3), 1528-1539.
  48. Kim, D., Kim, M., Baek, K., Lee, J., & Cho, H. (2021). A study on the effective operation of the qualification system for financial professionals in Korea: Focusing on the connection with qualification for financial planning. Financial Planning Review, 14(2), 89-114. https://doi.org/10.36029/FPR.2021.05.14.2.89
  49. Kim, J., Giroux, M., & Lee, J. C. (2021). When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychology & Marketing, 38(7), 1140-1155. https://doi.org/10.1002/mar.21498
  50. Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 205395171875668.
  51. Lee, M. K., & Baykal, S. (2017). Algorithmic mediation in group decisions. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 1035-1048.
  52. Leyer, M. and S. Schneider. (2019). Me, you or Ai? How do we feel about delegation. In Proceedings of the 27th European Conference on Information Systems (ECIS).
  53. Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., Chen, J., He, L., Zhu, J., Tian, P., Shao, H., Zheng, L., Hou, R., Hewett, S., Li, G., Liang, P., & Zang, X. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433-438. https://doi.org/10.1038/s41591-018-0335-9
  54. Lieberman, H. (1997). Autonomous interface agents. In CHI '97: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 67-74.
  55. Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90-103. https://doi.org/10.1016/j.obhdp.2018.12.005
  56. Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629-650. https://doi.org/10.1093/jcr/ucz013
  57. Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947.
  58. Malle, B. F., & Magar, S. T. (2017). What kind of mind do I want in my robot?: Developing a measure of desired mental capacities in social robots? In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 195-196.
  59. Malle, B. F., & Zhao, X. (2023). The now and future of social robots as depictions. The Behavioral and Brain Sciences, 46, e39.
  60. McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa ... examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. https://doi.org/10.1016/j.chb.2019.05.009
  61. Mori, M., MacDorman, K., & Kageki, N. (2012). The uncanny valley [from the field]. IEEE Robotics & Automation Magazine, 19(2), 98-100.
  62. Nederhof, A. J. (1985). Methods of coping with social desirability bias: A review. European Journal of Social Psychology, 15(3), 263-280. https://doi.org/10.1002/ejsp.2420150303
  63. Niszczota, P., & Kaszas, D. (2020). Robo-investment aversion. PLoS ONE, 15(9), e0239277.
  64. Page, L., & Page, K. (2010). Last shall be first: A field study of biases in sequential performance evaluation on the idol series. Journal of Economic Behavior & Organization, 73(2), 186-198. https://doi.org/10.1016/j.jebo.2009.08.012
  65. Palmeira, M., & Spassova, G. (2015). Consumer reactions to professionals who use decision aids. European Journal of Marketing, 49(3/4), 302-326. https://doi.org/10.1108/EJM-07-2013-0390
  66. Pezzo, M. V., & Beckstead, J. W. (2020). Algorithm aversion is too often presented as though it were non-compensatory: A reply to Longoni et al. (2020). Judgment and Decision Making, 15(3), 449-451. https://doi.org/10.1017/S1930297500007245
  67. Promberger, M., & Baron, J. (2006). Do patients trust computers? Journal of Behavioral Decision Making, 19(5), 455-468. https://doi.org/10.1002/bdm.542
  68. Schulte Steinberg, A. L., & Hohenberger, C. (2023). Can AI close the gender gap in the job market? Individuals' preferences for AI evaluations. Computers in Human Behavior Reports, 10, 100287.
  69. Seyama, J., & Nagayama, R. S. (2007). The uncanny valley: Effect of realism on the impression of artificial human faces. Presence: Teleoperators and Virtual Environments, 16(4), 337-351. https://doi.org/10.1162/pres.16.4.337
  70. Shallow, C., Iliev, R., & Medin, D. (2011). Trolley problems in context. Judgment and Decision Making, 6(7), 593-601. https://doi.org/10.1017/S1930297500002631
  71. Sundar, S. S., & Kim, J. (2019). Machine heuristic: When we trust computers more than humans with our personal information. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 538, 1-9.
  72. van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90(1), 215-222. https://doi.org/10.1016/j.chb.2018.09.009
  73. Wiafe, I., Koranteng, F. N., Obeng, E. N., Assyne, N., Wiafe, A., & Gulliver, S. R. (2020). Artificial intelligence for cybersecurity: A systematic mapping of literature. IEEE Access, 8, 146598-146612. https://doi.org/10.1109/ACCESS.2020.3013145
  74. Wieseke, J., Geigenmuller, A., & Kraus, F. (2012). On the role of empathy in customer-employee interactions. Journal of Service Research, 15(3), 316-331. https://doi.org/10.1177/1094670512439743
  75. Yam, K. C., Bigman, Y. E., Tang, P. M., Ilies, R., De Cremer, D., Soh, H., & Gray, K. (2020). Robots at work: People prefer-and forgive-service robots with perceived feelings. Journal of Applied Psychology, 106(10), 1557-1572.
  76. Yeomans, M., Shah, A., Mullainathan, S., & Kleinberg, J. (2019). Making sense of recommendations. Journal of Behavioral Decision Making, 32(4), 403-414. https://doi.org/10.1002/bdm.2118
  77. Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040. https://doi.org/10.1073/pnas.1418680112
  78. Zhang, L., Pentina, I., & Fan, Y. (2021). Who do you choose? Comparing perceptions of human vs robo-advisor in the context of financial services. Journal of Services Marketing, 35(5), 634-646.
  79. Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. (2023, June). The economic potential of generative AI: The next producti vity frontier. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#industry-impacts
  80. Durth, S., Hancock, B., Maor, D., & Sukharevsky, A. (2023, September). The organization of the future: Enable d by gen AI, driven by people. McKinsey & Company. https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-of-the-future-enabled-by-gen-ai-driven-by-people#/
  81. Grady, D. (2019, May 20). A.I. took a test to detect lung cancer. It got an A. The New York Times. https://www.nytimes.com/2019/05/20/health/cancer-artificial-intelligence-ct-scans.html
  82. IFR. (2023, September). World Robotics 2023. IFR. https://ifr.org/img/worldrobotics/2023_WR_extended_version.pdf
  83. Lee, G. (2022, March 18). AI in healthcare: What now after Watson? ERP Today, https://erp.today/ai-in-healthcare-what-now-after-watson/
  84. Oxford Insights. (2023). Government AI Readiness Index 2023. Oxford Insights, https://oxfordinsights.com/ai-readiness/ai-readiness-index/
  85. Statista. (2023). Artificial Intelligence: In-depth market analysis. In Statista (pp. 90-104). https://www.statista.com/study/50485/in-depth-report-artificial-intelligence/
  86. Statista. (2024). Artificial intelligence (AI): Statistics report on artificial intelligence (AI) worldwide. In Statista (pp. 5-27). https://www.statista.com/study/38609/artificial-intelligence-ai-statista-dossier/
  87. Thomson Reuters. (2023). Stepping into the future: How generative AI will help lawyers improve legal service delivery (pp. 1-15). https://legal.thomsonreuters.com/content/dam/ewp-m/documents/legal/en/pdf/reports/lawyers-harnessing-power-of-ai.pdf