참고문헌
- 박진우 (2021, 5월 6일). 파이썬 가르치는 4대 은행들... 1년 만에 석사급 150명 양성. 한국경제, https://www.hankyung.com/article/202105064284i
- 최예지 (2019, 12월 3일). 직장에도 부는 '코딩교육' 바람. 조선에듀, https://edu.chosun.com/m/edu_article.html?contid=2019120202376
- Al Akasheh, M., Malik, E. F., Hujran, O., & Zaki, N. (2023). A decade of research on data mining techniques for predicting employee turnover: A systematic literature review. Expert Systems with Applications, 238, 121794.
- Al-Darraji, S., Honi, D. G., Fallucchi, F., Abdulsada, A. I., Giuliano, R., & Abdulmalik, H. A. (2021). Employee attrition prediction using deep neural networks. Computers, 10(11), 141.
- Alduayj, S. S., & Rajpoot, K. (2018, November). Predicting employee attrition using machine learning. In Proceedings of 2018 International Conference on Innovations in Information Technology (IIT), IEEE.
- Alshiddy, M. S., & Aljaber, B. N. (2023). Employee attrition prediction using nested ensemble learning techniques. International Journal of Advanced Computer Science and Applications, 14(7), 932-938.
- Arqawi, S. M., Rumman, M. A., Zitawi, E. A., Abunasser, B. S., & Abu-Naser, S. S. (2022). Predicting Employee Attrition and Performance Using Deep Learning. Journal of Theoretical and Applied Information Technology, 100(21), 6526-6536.
- Atef, M., S Elzanfaly, D., & Ouf, S. (2022). Early prediction of employee turnover using machine learning algorithms. International Journal of Electrical and Computer Engineering Systems, 13(2), 135-144.
- Bhuva, K., & Srivastava, K. (2018). Comparative study of the machine learning techniques for predicting the employee attrition. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 5(3), 568-577.
- Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-driven decisionmaking affect firm performance? Available at SSRN 1819486.
- Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133-139.
- Chakraborty, R., Mridha, K., Shaw, R. N., & Ghosh, A. (2021, September). Study and prediction analysis of the employee turnover using machine learning approaches. In Proceedings of 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), IEEE.
- Ciampi, F., Marzi, G., Demi, S., & Faraoni, M. (2020). The big data-business strategy interconnection: A grand challenge for knowledge management. A review and future perspectives. Journal of Knowledge Management, 24(5), 1157-1176.
- Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Medical Education, 9(1), e46885.
- Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86.
- Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management Decision, 57(8), 1923-1936.
- Gao, X., Wen, J., & Zhang, C. (2019). An improved random forest algorithm for predicting employee turnover. Mathematical Problems in Engineering, 2019(1), 4140707.
- Guerranti, F., & Dimitri, G. M. (2023). A comparison of machine learning approaches for predicting employee attrition. Applied Sciences, 13(1), 267.
- Gurler, K., Pak, B. K., & Gungor, V. C. (2023, June). Deep Learning Based Employee Attrition Prediction. In Proceedings of IFIP International Conference on Artificial Intelligence Applications and Innovations, Cham: Springer Nature Switzerland.
- Hassan, M. M., Knipper, A., & Santu, S. K. K. (2023). ChatGPT as your personal data scientist. arXiv preprint arXiv2305.13657.
- Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: How AI-assisted conversational interfaces are revolutionizing the field. Big Data and Cognitive Computing, 7(2), 62.
- Jian, X., & Feng, Y. (2023). Research on enterprise intelligent knowledge management and decision making based on big data mining. Accounting and Corporate Management, 5(8), 27-34.
- Kaya, I. E., & Korkmaz, O. (2021). Machine learning approach for predicting employee attrition and factors leading to attrition. Cukurova universitesi Muhendislik Fakultesi Dergisi, 36(4), 913-928.
- Khan, Z., & Vorley, T. (2017). Big data text analytics: an enabler of knowledge management. Journal of Knowledge Management, 21(1), 18-34.
- Krishna, S., & Sidharth, S. (2022). HR analytics: Employee attrition analysis using random forest. International Journal of Performability Engineering, 18(4), 275.
- Li, W. (2023). A transformer-based deep learning framework to predict employee attrition. PeerJ Computer Science, 9, e1570.
- Lingo, R. (2023). The role of ChatGPT in democratizing data science: An exploration of ai-facilitated data analysis in telematics. arXiv preprint arXiv:2308.02045.
- Mansor, N., Sani, N. S., & Aliff, M. (2021). Machine learning for predicting employee attrition. International Journal of Advanced Computer Science and Applications, 12(11), 435-445.
- Meng, D., & Li, Y. (2022). An imbalanced learning method by combining SMOTE with Center Offset Factor. Applied Soft Computing, 120, 108618.
- Mohamad, M. R., Nasaruddin, F. H., Hamid, S., Bukhari, S., & Ijab, M. T. (2021, November). Predicting employees' turnover in IT industry using classification method with feature selection. In Proceedings of 2021 International Conference on Computer Science and Engineering (IC2SE), IEEE.
- Najafi-Zangeneh, S., Shams-Gharneh, N., ArjomandiNezhad, A., & Hashemkhani Zolfani, S. (2021). An improved machine learning-based employees attrition prediction framework with emphasis on feature selection. Mathematics, 9(11), 1226.
- Ozdemir, F., Coskun, M., Gezer, C., & Gungor, V. C. (2020, May). Assessing employee attrition using classifications algorithms. In Proceedings of the 2020 the 4th International Conference on Information System and Data Mining, (pp. 118-122).
- Pisoni, G., Molnar, B., & Tarcsi, A. (2023). Knowledge Management and Data Analysis Techniques for Data-Driven Financial Companies. Journal of the Knowledge Economy, 1-20.
- Pulari, S. R., Punitha, A., Raja Varshni Meenachi, S., & Vasudevan, S. (2022). A Comparative Study of Employee Attrition Analysis Using Machine Learning and Deep Learning Techniques. In Proceedings of Inventive Communication and Computational Technologies: Proceedings of ICICCT 2022, Singapore: Springer Nature Singapore.
- Raza, A., Munir, K., Almutairi, M., Younas, F., & Fareed, M. M. S. (2022). Predicting employee attrition using machine learning approaches. Applied Sciences, 12(13), 6424.
- Saripuddin, M., Suliman, A., Syarmila Sameon, S., & Jorgensen, B. N. (2021, September). Random undersampling on imbalance time series data for anomaly detection. In Proceedings of the 2021 4th International Conference on Machine Learning and Machine Intelligence, (pp. 151-156).
- Shen, Y., Ai, X., Soosai Raj, A. G., Leo John, R. J., & Syamkumar, M. (2024, March). Implications of ChatGPT for Data Science Education. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1.
- Tallon-Ballesteros, A. J., & Riquelme, J. C. (2014, July). Deleting or keeping outliers for classifier training? In 2014 sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014), IEEE.
- Tawil, A. R., Mohamed, M., Schmoor, X., Vlachos, K., & Haidar, D. (2023). Trends and challenges towards an effective data-driven decision making in UK SMEs: Case studies and lessons learnt from the analysis of 85 SMEs. arXiv preprint arXiv:2305.15454.
- Wang, S., & Wang, H. (2020). Big data for small and medium-sized enterprises (SMEs): A knowledge management model. Journal of Knowledge Management, 24(4), 881-897. https://doi.org/10.1108/JKM-02-2020-0081
- Yigit, I. O., & Shourabizadeh, H. (2017, September). An approach for predicting employee churn by using data mining. In Proceedings of 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE.
- Zhang, Y., Deng, L., Huang, H., & Wei, B. (2023). An improved SMOTE based on center offset factor and synthesis strategy for imbalanced data classification.