References
- M. Panthi, "Anomaly detection in smart grids using machine learning techniques," in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), pp. 220-222, 2020. DOI: 10.1109/ICPC2T48082.2020.9071434.
- J. Mulongo, M. Atemkeng, T. Ansah-Narh, R. R. Rockefeller, G. M. Nguegnang, and M. A. Garuti, "Anomaly detection in power generation plants using machine learning and neural networks," Applied Artificial Intelligence, vol. 34, no. 1, pp. 64-79, 2020. DOI: https://doi.org/10.1080/08839514.2019.1691839.
- A. Gholami and A. K. Srivastava, "Comparative analysis of ml techniques for data-driven anomaly detection, classification and localization in distribution system," in 2020 52nd North American Power Symposium (NAPS) IEEE, pp. 1-6, 2021. DOI: 10.1109/NAPS50074.2021.9449712.
- M. Ibrahim, A. Alsheikh, F. M. Awaysheh, and M. D. Alshehri, "Machine learning schemes for anomaly detection in solar power plants," Energies, vol. 15, no. 3, pp. 1082, 2022. DOI: https://doi.org/10.3390/en15031082.
- A. G. Imenes, N. S. Noori, O. A. N. Uthaug, R. Kroni, F. Bianchi, and N. Belbachir, "A deep learning approach for automated fault detection on solar modules using image composites," in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) IEEE, pp. 1925-1930, 2021. DOI: 10.1109/PVSC43889.2021.9518540.
- N.H. Ishak, M. A. I. Halim, and I. S. Isa, "Detection of Power Distribution Fault in Thermal Images Using CNN," in Intelligent Multimedia Signal Processing for Smart Ecosystems, Cham: Springer International Publishing, pp. 267-287, 2023. DOI: https://doi.org/10.1007/978-3-031-34873-0_11.
- B. V. Charitha and T. Ananthan, "Machine learning based fault detection in induction motor using thermal imaging," in 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC) IEEE, pp. 929-936, 2022. DOI: 10.1109/ICESC54411.2022.9885282.
- C. Wei, "Power grid facility thermal fault diagnosis via object detection with synthetic infrared imagery," in 2021 3rd International Conference on Electrical Engineering and Control Technologies (CEECT) IEEE, pp. 217-221, 2021. DOI: 10.1109/CEECT53198.2021.9672631.
- J. H. Syu, J. C. W. Lin, and G. Srivastava, "AI-Based Electricity Grid Management for Sustainability, Reliability, and Security," IEEE Consumer Electronics Magazine, 2023. DOI: 10.1109/MCE.2023.3264884.
- Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira, "Artificial intelligence-based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, vol. 287, pp. 116601, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.116601.
- C. Park, J. Lee, Y. Kim, J. G. Park, H. Kim, and D. Hong, "An enhanced AI-based network intrusion detection system using generative adversarial networks," IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2330-2345, 2022. DOI: 10.1109/JIOT.2022.3211346.
- S. Voronov, "Machine learning models for predictive maintenance," Doctoral dissertation, Linkoping University Electronic Press, 2020. DOI: 10.3384/diss.diva-162649.
- V. Vita, G. Fotis, V. Chobanov, C. Pavlatos, and V. Mladenov, "Predictive maintenance for distribution system operators in increasing transformers' reliability," Electronics, vol. 12, no. 6, pp. 1356, 2023. DOI: https://doi.org/10.3390/electronics12061356.
- L. I. Alvarez Quinones, C. A. Lozano-Moncada, and D. A. Bravo Montenegro, "Machine learning for predictive maintenance scheduling of distribution transformers," Journal of Quality in Maintenance Engineering, vol. 29, no. 1, pp. 188-202, 2023. DOI: https://doi.org/10.1108/JQME-06-2021-0052.
- R. Bin Mofidul, M. M. Alam, M. H. Rahman, and Y. M. Jang, "Realtime energy data acquisition, anomaly detection, and monitoring system: Implementation of a secured, robust, and integrated global IIoT infrastructure with edge and cloud AI," Sensors, vol. 22, no. 22, pp. 8980, 2022. DOI: https://doi.org/10.3390/s22228980.
- A. Vijayakumar and S. Vairavasundaram, "YOLO-based Object Detection Models: A Review and its Applications," Multimedia Tools and Applications, pp. 1-40, 2024. DOI: https://doi.org/10.1007/s11042-024-18872-y.
- D. G. Choe and D. K. Kim, "Deep learning-based image data processing and archival system for object detection of endangered species," Journal of Information and Communication Convergence Engineering, vol. 18, no. 4, pp. 267-277, 2020. DOI: https://doi.org/10.6109/jicce.2020.18.4.267.
- R. Rijayanti, R. F. Muhammad, and M. Hwang, "Vehicle waiting time information service using vehicle object detection at fuel charging station," Journal of Information and Communication Convergence Engineering, vol. 18, no. 3, pp. 147-154, 2020. DOI: https://doi.org/10.6109/jicce.2020.18.3.147.