
J. lnf. Commun. Converg. Eng. 22(2): 121-126, Jun. 2024 Regular paper

121

Received 19 September 2023, Revised 8 November 2023, Accepted 15 November 2023
*Corresponding Author Sung-Hwa Han (E-mail: shhan@tu.ac.kr, Tel:+82-10-3943-1247)
Department of Information Security, TongMyong University, Busan 48520, Korea

https://doi.org/10.56977/jicce.2024.22.2.121 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

Key Management Server Design in Multiuser Environment for
Critical File Protection

Sung-Hwa Han1*

1Department of Information Security, TongMyong University, Busan, 48520, Korea

Abstract

In enterprise environments, file owners are often required to share critical files with other users, with encryption-based file

delivery systems used to maintain confidentiality. However, important information might be leaked if the cryptokey used for

encryption is exposed. To recover confidentiality, the file owner must then re-encrypt and redistribute the file along with its new

encryption key, which requires considerable resources. To address this, we propose a key management server that minimizes the

distribution of encryption keys when critical files are compromised, with unique encryption keys assigned for each registered

user to access critical files. While providing the targeted functions, the server employs a level of system resources comparable to

that of legacy digital rights management. Thus, when implemented in an enterprise environment, the proposed server minimizes

cryptokey redistribution while maintaining accessibility to critical files in the event of an information breach.

Index Terms: Digital Right Management, Encryption Key, File Protection, Key Management System, Knowledge Management

System

I. INTRODUCTION

As the social environment becomes more complex, compa-

nies and organizations must handle increasing volumes of

critical information and media [1]. Much of this information,

especially that used to predict future outcomes, is confiden-

tial [2]. Confidential information can only be accessed by a

limited number of users, and may be shared among users to

maximize operational efficiency [3].

Confidential information is typically safeguarded via

access restrictions [4]. This information is prone to leaks or

modifications if made available to unauthorized parties [5].

Specifically, malicious attackers may compromise an organi-

zation’s activities by accessing important information [6].

Therefore, various technologies have been developed to pre-

vent unauthorized access to such information. Confidential

information can be protected by denying access to unautho-

rized users via access control, or maintaining confidentiality

using encryption [7].

When critical files are transferred externally, it becomes

difficult to enforce access control. Therefore, systems that

rely on external transfer typically maintain confidentiality

using encryption techniques [8]. Many organizations use

open-source software (OSS)-based file encryption methods

or commercial digital rights management (DRM) technolo-

gies [9]. When an encrypted file is shared, it is transferred to

another channel along with its cryptokey, and subsequently

sent to the recipient. The cryptokey allows only authenti-

cated users to access the file.

A DRM-based file sharing system stores cryptokeys before

delivering them to authenticated users [10]. However, mali-

cious parties are able to obtain the cryptokeys using social

engineering attacks or malware. To maintain the confidenti-

ality of a file, the file owner must re-encrypt the file, store

https://orcid.org/0000-0002-5518-4746

J. lnf. Commun. Converg. Eng. 22(2): 121-126, Jun. 2024

https://doi.org/10.56977/jicce.2024.22.2.121 122

the new cryptokey in DRM, and redistribute the cryptokey to

all authenticated users. Although this process reinforces the

security of sensitive data, it is highly resource-intensive.

To mitigate this issue, we propose a key management

server designed for multiuser environments.

The proposed key management server enables the follow-

ing functions:

• When a user creates a critical file, an encryption key is

randomly generated.

• When the file owner selects users to access the critical

files, the cryptokey is encrypted with the corresponding

users’ keys.

• When a user attempts to access the file, their authority is

verified through a user authentication process.

• Upon authentication, the encrypted cryptokey is deliv-

ered to the shared user.

The primary contributions of the proposed file access

monitoring structure are as follows:

• Explicit access to each file can be managed by its

owner, who can directly specify authorized users.

• Users can share critical files using unique cryptokeys.

• Cryptokeys can be readily redistributed even following

exposure.

The proposed key management server was demonstrated to

outperform legacy DRM in terms of functionality, and its

effectiveness was verified by analyzing its functionality and

performance.

II. RELATED WORKS

A. File protection techniques

Organizations frequently use information –including text,

images, audio, video, and floor plans– that is stored in files

and shared with other users [11] via methods such as knowl-

edge management systems (KMS) and web-based boards

[12]. Accordingly, network file systems typically allow users

to share files online [13]. When such files contain confiden-

tial or sensitive information, it is critical to maintain a suffi-

cient level of confidentiality via access control.

Access control is provided by multiple functionalities

including umask, SELinux, AppArmor, and Group Policy

Objects [14].

Fig. 1 depicts the architecture of SELinux, which monitors

file access by users [15]. When a user attempts to access a

file, the file is compared with the access control policy regis-

tered on the security server. If the user is not authorized to

access the file, access is denied at the kernel level in the

access vector cache.

In web-based file sharing systems such as KMS, access

control functions can be provided by enforcing user identifi-

cation and authentication. By providing account and privi-

lege management functions, web services regulate access to

critical files according to user identity or level of informa-

tion [16].

The confidentiality of files during transfer is typically

maintained via encryption [17]. In an encryption-based file

delivery system, files are initially encrypted by their owners,

and subsequently sent to authorized users through a different

channel, along with the corresponding cryptokeys. An

authenticated user can access each file after decrypting it

using its respective cryptokey. However, this approach is

ineffective because it requires file owners to directly manage

encryption keys. This inefficiency can be mitigated using

DRM.

Fig. 1. SELinux file access control architecture

Fig. 2. DRM structure

Key Management Server Design in Multiuser Environment for Critical File Protection

123 http://jicce.org

Fig. 2 illustrates a DRM structure [18] comprising a server

and an agent, where the former consists of a key manage-

ment server, account database, and key database. Using the

DRM agent, the user creates a cryptokey and uses it to

encrypt critical files [19]. The generated cryptokey is deliv-

ered to the key management server, which manages the

crypto-keys and provides user authentication functions.

All encrypted files, along with their respective cryptokeys,

are stored in the key database. To access a file, the user must

be authenticated by the key management server. Upon suc-

cessful authentication, the server sends the corresponding

cryptokey to the user.

B. Analysis of security environments

DRM-based file delivery systems use encryption tech-

niques that allow multiple users to share files while main-

taining confidentiality. Although OSS-based file sharing

techniques are currently in development, they incur potential

security vulnerabilities.

First, file sharing systems are vulnerable to damage from

cryptokey leaks. In the process of sharing files, users also

share the corresponding cryptokeys, which may be inter-

cepted by attackers through packet sniffing or e-mail hook-

ing. Upon accessing critical files, attackers may leak or

modify the stored information.

Furthermore, cryptokey leaks incur high response costs, as

file owners must re-encrypt any compromised files to main-

tain confidentiality. Because this process must be repeated to

share the re-encrypted files with authorized users, it is highly

resource-intensive.

III. KEY DATABASE DESIGN IN MULTIUSER

ENVIRONMENT

To improve file transfer efficiency and expand the func-

tionalities of legacy DRM, we propose a key management

server in a multiuser environment.

A. Key database design

The proposed key management server simultaneously han-

dles legacy DRM accounts and databases. For each critical

file, the database records the IDs of all users authorized to

access the file. Furthermore, the database includes an

account list table, which associates cryptokeys with their

respective users. Fig. 3 illustrates the key database structure.

The key management server separates each cryptokey used

to encrypt a critical file from the user key that encrypts it.

The cryptokey stored in the database is encrypted with the

key of the user accessing the file. Thus, N encrypted crypto-

keys are created for a system of N authorized users, with

each user assigned a unique key. Even if a user changes their

key, accessibility can be guaranteed by modifying only the

encrypted cryptokey. In the event that a user key is compro-

mised, the keys of all other users remain secure, and only the

leaked user key must be regenerated and redelivered. This is

more cost-effective than the key redistribution process used

in legacy DRM.

B. Critical file encrypt/decrypt process

Fig. 4 illustrates the encryption and decryption of files by

the proposed key management server.

When the DRM manager registers a user account, the

server stores a corresponding user key. The DRM agent ran-

domly generates a cryptokey and encrypts the user-generated

file. Subsequently, the agent delivers the cryptokey, file-

name, and an authorized user list defined by the file owner

to the server. The server then generates an encrypted crypto-

key with each user key in the list of authorized users and

stores it in the key database.

When requesting access to a file, the user first sends their

ID to the server through the DRM agent and requests an

encrypted cryptokey. The server searches the database and

verifies whether the user is registered in the authorized user

list. Upon successful authentication, the server delivers the

encrypted cryptokey to the user.

By entering the received key, the user can decrypt and

access the desired file.

Fig. 3. Key table structure

J. lnf. Commun. Converg. Eng. 22(2): 121-126, Jun. 2024

https://doi.org/10.56977/jicce.2024.22.2.121 124

IV. VERIFICATION

A. Verification environment

By resolving the functional problems associated with leg-

acy DRM, the proposed key management server can accu-

rately provide targeted functions without incurring additional

time or resource costs. The effectiveness of the proposed

server was verified by analyzing its functionality and perfor-

mance.

Table 1 lists the software specifications and hardware

environment used to verify the proposed server. The server

and key databases were implemented in a separate system

from the DRM agent. An artificially low hardware was

selected to measure the resource usage of the proposed

server and DRM agent.

B. Function verification

The proposed key management server must be able to reg-

ulate access by multiple users while maintaining the confi-

dentiality of critical files. Any authenticated users must be

simultaneously granted access to the files via user keys,

whereas unauthenticated users should be denied access. The

defined unit functions are listed in Table 2.

To confirm that the proposed server provides the intended

functionality, we executed the verification items listed in

Table 2. Because the actual results were similar to the

expected results, the proposed key management server has

been demonstrated to overcome the functional limitations of

legacy DRM.

C. Performance verification

To verify the proposed server’s performance in a multi-

user environment, we conducted a performance test using

OpenSSL 1.1.1v, with a legacy file encryption technique

adopted as a baseline.

Fig. 4. File encryption and decryption processes

Table 2. Function Verification Items

ID Object

Func_01
When registering a user account, check whether the unique

user key is created and saved properly.

Func_02
When a user creates a critical file, check whether the cryp-

tokey required to encrypt it is generated properly.

Func_03
With the owner's settings, check whether the critical file is

encrypted with the cryptokey.

Func_04

When the owner specifies users authorized to access the

critical file, check whether the encrypted cryptokey is gen-

erated using the key of each user registered in the autho-

rized user list.

Func_05

When multiple users access a critical file, check whether

the encrypted cryptokeys are decrypted using correspond-

ing user keys. Subsequently, check whether the file is

decrypted using the decrypted cryptokeys.

Func_06

When an unauthorized user gains access to a critical file,

the key management server identifies this user by search-

ing the key database.
Table 1. Verification environments

Component
Key Management Server

and Database
DRM Agent

OS CentOS 8.3 CentOS 8.3

CPU Intel i5 3750K Intel i5 3750K

Memory 8 Gbyte 8 Gbyte

SSD 500Gbyte 500Gbyte

Key Management Server Design in Multiuser Environment for Critical File Protection

125 http://jicce.org

1) Cryptokey input resource usage

In an environment where multiple users can access critical

files, the resources used to store encrypted cryptokeys should

minimize interference with the activities of other applica-

tions. Therefore, the resource usage of the proposed server

was measured and compared to that of OpenSSL 1.1.1v. To

this end, we measured CPU usage when generating 10000,

25000, 50000, 100000, 250000, and 500000 encrypted cryp-

tokeys. Each configuration was deployed and measured 10

times, with Table 3 listing the average measured CPU usage

for each set of trials [20].

As observed from the table, the two architectures incurred

similar resource costs to generate cryptokeys.

2) Cryptokey access time

To measure the time required to access cryptokeys by the

proposed server and OpenSSL, we registered 10000, 25000,

50000, 100000, 250000, and 500000 dummy cryptokeys and

measured the cryptokey search time as follows:

Encrypted crypto key search time = Time to read the final

encrypted crypto key − Time to read the first encrypted

crypto key in the table.

As shown in Fig. 5, the search times measured for the two

architectures were mutually comparable.

V. CONCLUSION

As enterprise environments grow in complexity, organiza-

tions and companies must handle increasingly large volumes

of information, and real-time responsiveness must be main-

tained in the process of sharing this information. In this

environment, data confidentiality can be maintained using

encryption-based DRM. However, this approach is vulnera-

ble to cryptokey leaks, which require considerable resources

to recover from.

To address this problem, we propose a key management

server structure that minimizes re-encryption costs in a

multi-user environment by assigning a unique key to each

authorized user. When a user key is lost or exposed, the con-

fidentiality of shared data can be maintained by modifying

only that specific key.

The functionality and performance of the proposed server

were verified to be effective. Our experimental results con-

firm that the target functionality is provided accurately, with

resource usage and response speeds comparable to those of

OpenSSL 1.1.1v.

However, the present study focused solely on presenting

and verifying the core functionality of the proposed server.

Therefore, additional research is required to implement the

server in real enterprise environments.

ACKNOWLEDGMENTS

This Research was supported by Tongmyong University

Research Grant 2021A023.

REFERENCES

[1] S. H. Han, “TTY Session Audit Techniques for Linux Platform,” in

IEEE/ACIS International Conference on Big Data, Cloud Computing,

and Data Science Engineering, Cham: Springer International

Publishing, pp. 95-105, Feb. 2023. DOI: https://doi.org/10.1007/978-

3-031-19608-9_8.

[2] R. Wądołowski, “Protection of classified information in Bosnia and

Herzegovina and Croatia,” Selected criminal and administrative

regulations. Przegląd Bezpieczeństwa Wewnętrznego, vol. 14, no.

27, pp. 276-299, Dec. 2022. DOI: https://doi.org/10.4467/20801335

PBW.22.059.16950.

[3] V. S. Tchamyou, “The role of information sharing in modulating the

effect of financial access on inequality,” Journal of African Business,

vol. 20, no. 3, pp. 317-338, Mar. 2019. DOI: https://doi.org/10.1080/

15228916.2019.1584262.

[4] J. L. Peterson, “Confidentiality in medicine: how far should doctors

prioritise the confidentiality of the individual they are treating?,”

Postgraduate medical journal, vol. 94, no. 1116, pp. 596-600, Oct.Fig. 5. Time required to search for encrypted cryptokeys

Table 3. Resource usage when generating cryptokeys

Case Crypto Key Count

Key Database

suggest

in this study

Count 10000 25000 50000

CPU Usage 1.22% 1.24% 1.23%

Count 100000 250000 500000

CPU Usage 1.20% 1.23% 1.22%

OpenSSL 1.1.1v

Count 10000 25000 50000

CPU Usage 1.20% 1.25% 1.22%

Count 100000 250000 500000

CPU Usage 1.21% 1.22% 1.21%

J. lnf. Commun. Converg. Eng. 22(2): 121-126, Jun. 2024

https://doi.org/10.56977/jicce.2024.22.2.121 126

2018. DOI: https://doi.org/10.1136/postgradmedj-2018-136038.

[5] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection

for cloud storage: A survey,” IEEE Access, vol. 8, pp. 131723-

131740, Jul. 2020. DOI: https://doi.org/10.1109/ACCESS.2020.

3009876.

[6] G. R. Tsochev, R. D. Yoshinov, and O. P. Iliev, “Key problems of

the critical information infrastructure through SCADA systems

research,” Информатика и автоматизация, vol. 18, no. 6, pp.

1333-1356, Dec. 2019. DOI: https://doi.org/10.15622/sp.2019.18.6.

1333-1356.

[7] Z. N. Mohammad, F. Farha, A. O. Abuassba, S. Yang, and F. Zhou,

“Access control and authorization in smart homes: A survey,”

Tsinghua Science and Technology, vol. 26, no. 6, pp. 906-917, Jun.

2021. DOI: https://doi.org/10.26599/TST.2021.9010001.

[8] M. P. K. Bachhav and M. M. A. Amritkar, “Secure Data Access

Control and Efficient CP-ABE for Multi Authority Cloud Storage

with Data Mirroring,” in International Conference On Emanations in

Modern Technology and Engineering, vol. 5, no. 3, pp. 19-22, 2017.

[9] H. E. R. Hassan, M. Tahoun, and G. S. ElTaweel, “A robust

computational DRM framework for protecting multimedia contents

using AES and ECC,” Alexandria Engineering Journal, vol. 59, no.

3, pp. 1275-1286, Jun. 2020. DOI: https://doi.org/10.1016/j.aej.2020.

02.020.

[10] C. C. Lee, C. T. Li, Z. W. Chen, Y. M. Lai, and J. C. Shieh, “An

improved E-DRM scheme for mobile environments,” Journal of

information security and applications, vol. 39, pp. 19-30, Apr. 2018.

DOI: https://doi.org/10.1016/j.jisa.2018.02.001.

[11] P. Kaushik, K. Joshi, J. Pandey, and T. Garg, “Statistical Deformity

in Steganogrpahy and its Overcomings,” Journal of Emerging

Technologies and Innovative Research, vol 5, no. 6, pp. 697-710,

Jun. 2018.

[12] E. Sultanow, M. Tobolla, A. Ullrich, and G. Vladova, “Visual

Analytics Supporting Knowledge Management,” in i-KNOW, Oct.

2017.

[13] K. Matsuzawa, M. Hayasaka, and T. Shinagawa, “The quick

migration of file servers,” in Proceedings of the 11th ACM

International Systems and Storage Conference, pp. 65-75, 2018.

DOI: https://doi.org/10.1145/3211890.3211894.

[14] H. K. Lee, S. H. Han, and D. Lee, “Kernel-Based Container File

Access Control Architecture to Protect Important Application

Information,” Electronics, vol. 12, no. 1, pp. 52, Dec. 2022. DOI:

https://doi.org/10.3390/electronics12010052.

[15] S. H. Han and D. Lee, “Kernel-based real-time file access monitoring

structure for detecting malware activity,” Electronics, vol. 11, no. 12,

pp. 1871, Apr. 2022. DOI: https://doi.org/10.3390/electronics11121871.

[16] S. Cho, S. Hwang, W. Shin, N. Kim, and H. P. In, “Design of

military service framework for enabling migration to military SaaS

cloud environment,” Electronics, vol. 10, no. 5, pp. 572, Mar. 2021.

DOI: https://doi.org/10.3390/electronics10050572.

[17] L. Yang, Z. Han, Z. Huang, and J. Ma, “A remotely keyed file

encryption scheme under mobile cloud computing,” Journal of

Network and Computer Applications, vol. 106, pp. 90-99, Mar. 2018.

DOI: https://doi.org/10.1016/j.jnca.2017.12.017.

[18] H. Wang, “A Password-Based Access Control Framework for Time-

Sequence Aware Media Cloudization,” Cryptology ePrint Archive,

Oct. 2022.

[19] D. Cho, S. Hwang, and G. Jeong, “DRM market system for media

service platform supporting multi-DRM in cloud environment,”

Advanced Science Letters, vol. 23, no. 12, pp. 12721-12724, Dec.

2017. DOI: https://doi.org/10.1166/asl.2017.10886.

[20] A. E. Guvercin and B. Avenoglu, “Performance Analysis of Object-

Relational Mapping (ORM) Tools in. Net 6 Environment,” Bilişim

Teknolojileri Dergisi, vol. 15, no. 4, pp. 453-465, Oct. 2022. DOI:

https://doi.org/10.17671/gazibtd.1059516.

Sung-Hwa Han
He received the Ph.D. degree from Soongsil University, Republic of Korea. He is a professor in the Department of

Information Security, Tongmyong University. He has been developing information security techniques for about 20 years.

His research areas inlcude network, system security, and various platform security, such as cloud platform and blockchain.

