DOI QR코드

DOI QR Code

달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향

Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables

  • Young-Seong Lee (Department of Sports and Technology, Seo Kyeong University) ;
  • Jae-Won Kang (Motion Innovation Centre, Korea National Sport University) ;
  • Sang-Kyoon Park (Motion Innovation Centre, Korea National Sport University)
  • 투고 : 2024.05.30
  • 심사 : 2024.06.18
  • 발행 : 2024.06.30

초록

Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant number: 2020S1A5A2A01046477).

참고문헌

  1. Beck, B. R. (1998). Tibial stress injuries: an aetiological review for the purposes of guiding management. Sports Medicine, 26(4), 265-279.
  2. Brughelli, M., Cronin, J. & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. The Journal of Strength & Conditioning Research, 25(4), 933-939.
  3. Busa, M. A., Lim, J., van Emmerik, R. E. & Hamill, J. (2016). Head and tibial acceleration as a function of stride frequency and visual feedback during running. PloS One, 11(6), e0157297.
  4. Cheung, R. T., Wong, R. Y., Chung, T. K., Choi, R. T., Leung, W. W. & Shek, D. H. (2017). Relationship between foot strike pattern, running speed, and footwear condition in recreational distance runners. Sports Biomechanics, 16(2), 238-247.
  5. Cheung, R. T. H., Zhang, J. H., Chan, Z. Y. S., An, W. W., Au, I. P. H., MacPhail, A. & Davis, I. S. (2019). Shoe-mounted accelerometers should be used with caution in gait retraining. Scandinavian Journal of Medicine & Science in Sports, 29(6), 835-842.
  6. Clark, K. P., Ryan, L. J. & Weyand, P. G. (2017). A general relationship links gait mechanics and running ground reaction forces. Journal of Experimental Biology, 220(2), 247-258.
  7. Derrick, T. R., Hamill, J. & Caldwell, G. E. (1998). Energy absorption of impacts during running at various stride lengths. Medicine & Science in Sports & Exercise, 30(1), 128-135.
  8. Dorn, T. W., Schache, A. G. & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology, 215(11), 1944-1956.
  9. Dufek, J. S., Mercer, J. A. & Griffin, J. R. (2009). The effects of speed and surface compliance on shock attenuation characteristics for male and female runners. Journal of Applied Biomechanics, 25(3), 219-228.
  10. Edwards, W. B., Derrick, T. R. & Hamill, J. (2012). Musculoskeletal attenuation of impact shock in response to knee angle manipulation. Journal of Applied Biomechanics, 28(5), 502-510.
  11. Fields, K. B., Sykes, J. C., Walker, K. M. & Jackson, J. C. (2010). Prevention of running injuries. Current Sports Medicine Reports, 9(3), 176-182.
  12. Forner-Cordero, A., Mateu-Arce, M., Forner-Cordero, I., Alcantara, E., Moreno, J. C. & Pons, J. L. (2008). Study of the motion artefacts of skin-mounted inertial sensors under different attachment conditions. Physiological Measurement, 29(4), N21-31.
  13. Fredericson, M., Jennings, F., Beaulieu, C. & Matheson, G. O. (2006). Stress fractures in athletes. Topics in Magnetic Resonance Imaging, 17(5), 309-325.
  14. Fukuchi, R. K., Fukuchi, C. A. & Duarte, M. (2017). A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ, 5, e3298.
  15. Glauberman, M. D. & Cavanagh, P. R. (2014). Rearfoot strikers have smaller resultant tibial accelerations at foot contact than non-rearfoot strikers. Journal of Foot and Ankle Research, 7, 1.
  16. Grabowski, A. M. & Kram, R. (2008). Effects of velocity and weight support on ground reaction forces and metabolic power during running. Journal of Applied Biomechanics, 24(3), 288-297.
  17. Gray, A., Price, M. & Jenkins, D. (2021). Predicting temporal gait kinematics from running velocity. The Journal of Strength & Conditioning Research, 35(9), 2379-2382.
  18. Gruber, A. H., Boyer, K. A., Derrick, T. R. & Hamill, J. (2014). Impact shock frequency components and attenuation in rearfoot and forefoot running. Journal of Sport and Health Science, 3(2), 113-121.
  19. Hamill, J., Derrick, T. R. & Holt, K. G. (1995). Shock attenuation and stride frequency during running. Human Movement Science, 14(1), 45-60.
  20. Hamner, S. R. & Delp, S. L. (2013). Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. Journal of Biomechanics, 46(4), 780-787.
  21. Hennig, E. M. & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. Journal of Applied Biomechanics, 7(3), 303-309.
  22. Kavanagh, J. J., Barrett, R. S. & Morrison, S. (2004). Upper body accelerations during walking in healthy young and elderly men. Gait & Posture, 20(3), 291-298.
  23. Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G. & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11(5), 253-259.
  24. Kim, W., Voloshin, A. S., Johnson, S. H. & Simkin, A. (1993). Measurement of the impulsive bone motion by skin-mounted accelerometers. Journal of Biomechanical Engineering, 115(1), 47-52.
  25. Lafortune, M. A. & Hennig, E. M. (1992). Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clinical Biomechanics, 7(3), 181-184.
  26. Lake, M. J. (2000). Determining the protective function of sports footwear. Ergonomics, 43(10), 1610-1621.
  27. Lee, Y. S. & Park S. K. (2023). Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running. Korean Journal of Sport Biomechanics, 33(4), 164-174.
  28. Lucas-Cuevas, A. G., Encarnacion-Martinez, A., Camacho-Garcia, A., Llana-Belloch, S. & Perez-Soriano, P. (2017). The location of the tibial accelerometer does influence impact acceleration parameters during running. Journal of Sports Sciences, 35(17), 1734-1738.
  29. Malisoux, L., Nielsen, R. O., Urhausen, A. & Theisen, D. (2015). A step towards understanding the mechanisms of running-related injuries. Journal of Science and Medicine in Sport, 18(5), 523-528.
  30. Mazza, C., Iosa, M., Pecoraro, F. & Cappozzo, A. (2008). A. Control of the upper body accelerations in young and elderly women during level walking. Journal of Neuro-Engineering and Rehabilitation, 5, 30.
  31. McMahon, T. A., Valiant, G. & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology, 62(6), 2326-2337.
  32. Meardon, S. A. & Derrick, T. R. (2014). Effect of step width manipulation on tibial stress during running. Journal of Biomechanics, 47(11), 2738-2744.
  33. Mercer, J. A., Bates, B. T., Dufek, J. S. & Hreljac, A. (2003). Characteristics of shock attenuation during fatigued running. Journal of Sports Science, 21(11), 911-919.
  34. Nielsen, R. O., Nohr, E. A., Rasmussen, S. & Sorensen, H. (2013). Classifying running-related injuries based upon etiology, with emphasis on volume and pace. International Journal of Sports Physical Therapy, 8(2), 172-179.
  35. Nigg, B. M., Bahlsen, H. A., Luethi, S. M. & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20(10), 951-959.
  36. Orendurff, M. S., Kobayashi, T., Tulchin-Francis, K., Tullock, A. M. H., Villarosa, C., Chan, C., Kraus, E. & Strike, S. (2018). A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds. Journal of Biomechanics, 71, 167-175.
  37. Park, S. K., Stefanyshyn, D., Ryu, S., Gil, H., Lee, Y. S., Kim, J. & Ryu, J. (2022). Comparisons of Age-Related Changes in Impact Characteristics Between Healthy Older and Younger Runners. International Journal of Precision Engineering and Manufacturing, 23(12), 1465-1476.
  38. Petersen, J., Nielsen, R. O., Rasmussen, S. & Sorensen, H. (2014). Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16 km.h-1. Clinical Biomechanics, 29(9), 959-964.
  39. Reenalda, J., Maartens, E., Buurke, J. H. & Gruber, A. H. (2019). Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait & Posture, 68, 155-160.
  40. Ryu, S., Lee, Y. S. & Park, S. K. (2021). Impact signal differences dependent on the position of accelerometer attachment and the correlation with the ground reaction force during running. International Journal of Precision Engineering and Manufacturing, 22, 1791-1798.
  41. Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D. & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine & Science in Sports & Exercise, 43(7), 1260-1271.
  42. Schache, A. G., Dorn, T. W., Williams, G. P., Brown, N. A. & Pandy, M. G. (2014). Lower-limb muscular strategies for increasing running speed. Journal of Orthopaedic & Sports Physical Therapy, 44(10), 813-824.
  43. Sheerin, K. R., Besier, T. F. & Reid, D. (2018). The influence of running velocity on resultant tibial acceleration in runners. Sports Biomechanics, 19(6), 750-760.
  44. Sinclair, J. (2016). Sex differences in shock attenuation during running. Central European Journal of Sport Sciences and Medicine, 15(3).
  45. Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R. & Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.
  46. Voloshin, A. & Wosk, J. (1982). An in vivo study of low back pain and shock absorption in the human locomotor system. Journal of Biomechanics, 15(1), 21-27.
  47. Whittle, M. W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait & Posture, 10(3), 264-275.
  48. Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193-214.