Acknowledgement
This work was supported by a research grant Seoul Women's University (2024-0072).
References
- Adrian, L. K. & Derek, B. L. (2018). An aerodynamic analysis of recent FIFA world cup balls. European Journal of Physics, 39, 034001.
- Alam, F., Chowdhury, H., Staemmer, M., Wang, Y. & Yang, J. (2012). Effects of surface structure on soccer ball aerodynamics. Procedia Engineering, 34, 146-151. https://doi.org/10.1016/j.proeng.2012.04.026
- Asai, T. & Hong, S. (2021). Aerodynamics of the newly approved football for the English Premier League 2020-21 season. Scientific Reports, 11, 9578.
- Asai, T. & Kamemoto, K. (2011). Flow structure of knuckling effect in footballs. Journal of Fluids and Structures, 27, 727-733. https://doi.org/10.1016/j.jfluidstructs.2011.03.016
- Asai, T., Nakanishi, Y., Akiyama, N. & Hong, S. (2020). Flow visualization of spinning and nonspinning soccer balls using computational fluid dynamics. Applied Sciences, 10, 4543.
- Asai, T. & Seo, K. (2013). Aerodynamic drag of modern soccer balls. SpringerPlus, 2, 171.
- Goff, J. E., Asai, T. & Hong, S. (2014). A comparison of Jabulani and Brazuca non-spin aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228, 188-194. https://doi.org/10.1177/1754337114526173
- Goff, J. E. & Carre, M. J. (2009). Trajectory analysis of a soccer ball. American Journal of Physics, 77, 1020-1027. https://doi.org/10.1119/1.3197187
- Goff, J. E., Hong, S. & Asai, T. (2018). Aerodynamic and surface comparisons between Telstar 18 and Brazuca. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 232, 342-348. https://doi.org/10.1177/1754337118773214
- Goff, J. E., Hong, S. & Asai, T. (2020). Effect of a soccer ball's seam geometry on its aerodynamics and trajectory. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 234, 19-29. https://doi.org/10.1177/1754337119876485
- Goff, J. E., Hong, S. & Asai, T. (2022). Aerodynamic comparisons between Al Rihla and recent World Cup soccer balls. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. (online first).
- Hong, S. (2019). Aerodynamics of modern soccer ball. 2019 KSME19-Th04B001. 373-376.
- Hong, S. & Asai, T. (2010). Fundamental Aerodynamics of Non-spinning Soccer Ball. Korean Journal of Sport Science, 21(3), 1325-1336. https://doi.org/10.24985/kjss.2010.21.3.1325
- Hong, S. & Asai, T. (2011a). Aerodynamics of Knuckling Effect Shot Using Kick-robot. International Journal of Applied Sports Sciences, 23(2), 406-420.
- Hong, S. & Asai, T. (2011b). Foot and Ball Behaviour During Impact Phase of Knuckling Shot. Korean Journal of Sport Science, 22(4), 2330-2336.
- Hong, S. & Asai, T. (2014). Effect of panel shape of soccer ball on its flight characteristics. Scientific Reports, 4, 5068.
- Hong, S. & Asai, T. (2017). Aerodynamic effects of dimples on soccer ball surfaces. Heliyon, 3, e00432.
- Hong, S. & Asai, T. (2020). Effect of surface groove structure on the aerodynamics of soccer balls. Applied Sciences, 10, 5877.
- Hong, S. & Asai, T. (2021). Aerodynamic differences between new and used soccer balls. Applied Sciences, 11, 7204.
- Hong, S., Asai, T. & Seo, K. (2015). Visualization of air flow around soccer ball using a particle image velocimetry. Scientific Reports, 5, 15108.
- Hong, S., Chung, C., Sakamoto, K., Nagahara, R. & Asai, T. (2013). A biomechanical analysis of the knuckling shot in football. In: Green, M., Gregson, W. & Drust, B. (eds) Science and Football VII, Routledge, London.
- Hong, S., Goff, J. E. & Asai, T. (2019). Effect of a soccer ball's surface texture on its aerodynamics and trajectory. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233, 67-74. https://doi.org/10.1177/1754337118794561
- Hong, S., Goff, J. E. & Asai, T. (2024). The aerodynamics of new design soccer balls using a three-dimensional printer. Applied Sciences, 14(9), 3932.
- Hong, S., Park, S. & Byun, K. (2015). How Panel Design to Fly on the Modern Soccer Ball. The Korea Contents Association Conference 2015. 189-190.
- Hussain, S. B., Shah, S. I. A. & Khan, M. K. A. (November 2019). Aerodynamic design considerations for a soccer ball. 2019 Sixth International Conference on Aerospace Science and Engineering (ICASE), 1-16.
- Mehta, R. D. (1985). Aerodynamics of sports balls. Annual Review of Fluid Mechanics, 17, 151-189. https://doi.org/10.1146/annurev.fl.17.010185.001055
- Mehta, R. D. (2008). Sports Ball Aerodynamics. In: Norstrud, H. (eds) Sport Aerodynamics. CISM International Centre for Mechanical Sciences, vol 506. Springer, Vienna.
- Mizota, T., Kurogi, K., Ohya, Y., Okajima, A., Naruo, T. & Kawamura, Y. (2013). The strange flight behaviour of slowly spinning soccer balls. Scientific Reports, 3, 1871.
- Naito, K., Hong, S., Koido, M., Nakayama, M., Sakamoto, K. & Asai, T. (2018). Effect of seam characteristics on critical Reynolds number in footballs. Mechanical Engineering Journal, 5, 17-00369.
- Oggiano, L. & Saetran, L. (2010). Aerodynamics of modern soccer balls. Procedia Engineering, 2, 2473-2479. https://doi.org/10.1016/j.proeng.2010.04.018
- Passmore, M. A., Rogers, D., Tuplin, S., Harland, A., Lucas, T. & Holmes, C. (2012). The aerodynamic performance of a range of FIFA-approved footballs. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 226, 61-70. https://doi.org/10.1177/1754337111415768
- Sakamoto, Y., Hiratsuka, M. & Ito, S. (2021). Effect of soccer ball panels on aerodynamic characteristics and flow in drag crisis. Applied Sciences, 11(1), 296.