DOI QR코드

DOI QR Code

Comparison of the basic Aerodynamics between the World Cup Official Ball and Korean Soccer Balls

월드컵 공인구와 한국 축구 공인구 사이의 기초 공력특성 비교

  • Sungchan Hong (Department of Sport and Exercise Science, Seoul Women's University)
  • Received : 2024.04.09
  • Accepted : 2024.06.03
  • Published : 2024.06.30

Abstract

Objective: This study aims to compare the basic aerodynamic characteristics of the official Qatar World Cup soccer ball with those of the official Korean soccer balls. Method: In this study, wind tunnel experiments were conducted to compare the fundamental aerodynamic properties of two commonly used domestic soccer balls, the Star and Nassau, with the Al Rihla, the official ball of the 2022 Qatar World Cup. Results: The findings revealed that the Nassau soccer ball exhibited changes in aerodynamic characteristics depending on its orientation, particularly at low speeds (below 15 m/s), while the Al Rihla showed variations in aerodynamic characteristics at medium to high speeds (15 m/s to 35 m/s) based on its orientation. Furthermore, the results of lift and side force variations indicated that the Star soccer ball exhibited larger changes compared to other soccer balls, suggesting that it may exhibit the most irregular flight path during strong shots (around 30 m/s or approximately 100 km/h). However, there were no differences in aerodynamics observed among the soccer balls in the medium-speed range (20~25 m/s). Conclusion: The comparison of aerodynamics between the Korean soccer balls and the most recently used World Cup official ball showed that, while the Korean balls exhibited slightly greater changes in lift and side forces compared to the World Cup ball, there were no significant differences in most of the aerodynamic characteristics.

Keywords

Acknowledgement

This work was supported by a research grant Seoul Women's University (2024-0072).

References

  1. Adrian, L. K. & Derek, B. L. (2018). An aerodynamic analysis of recent FIFA world cup balls. European Journal of Physics, 39, 034001. 
  2. Alam, F., Chowdhury, H., Staemmer, M., Wang, Y. & Yang, J. (2012). Effects of surface structure on soccer ball aerodynamics. Procedia Engineering, 34, 146-151. https://doi.org/10.1016/j.proeng.2012.04.026
  3. Asai, T. & Hong, S. (2021). Aerodynamics of the newly approved football for the English Premier League 2020-21 season. Scientific Reports, 11, 9578. 
  4. Asai, T. & Kamemoto, K. (2011). Flow structure of knuckling effect in footballs. Journal of Fluids and Structures, 27, 727-733.  https://doi.org/10.1016/j.jfluidstructs.2011.03.016
  5. Asai, T., Nakanishi, Y., Akiyama, N. & Hong, S. (2020). Flow visualization of spinning and nonspinning soccer balls using computational fluid dynamics. Applied Sciences, 10, 4543. 
  6. Asai, T. & Seo, K. (2013). Aerodynamic drag of modern soccer balls. SpringerPlus, 2, 171. 
  7. Goff, J. E., Asai, T. & Hong, S. (2014). A comparison of Jabulani and Brazuca non-spin aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228, 188-194.  https://doi.org/10.1177/1754337114526173
  8. Goff, J. E. & Carre, M. J. (2009). Trajectory analysis of a soccer ball. American Journal of Physics, 77, 1020-1027.  https://doi.org/10.1119/1.3197187
  9. Goff, J. E., Hong, S. & Asai, T. (2018). Aerodynamic and surface comparisons between Telstar 18 and Brazuca. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 232, 342-348.  https://doi.org/10.1177/1754337118773214
  10. Goff, J. E., Hong, S. & Asai, T. (2020). Effect of a soccer ball's seam geometry on its aerodynamics and trajectory. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 234, 19-29.  https://doi.org/10.1177/1754337119876485
  11. Goff, J. E., Hong, S. & Asai, T. (2022). Aerodynamic comparisons between Al Rihla and recent World Cup soccer balls. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. (online first). 
  12. Hong, S. (2019). Aerodynamics of modern soccer ball. 2019 KSME19-Th04B001. 373-376. 
  13. Hong, S. & Asai, T. (2010). Fundamental Aerodynamics of Non-spinning Soccer Ball. Korean Journal of Sport Science, 21(3), 1325-1336.  https://doi.org/10.24985/kjss.2010.21.3.1325
  14. Hong, S. & Asai, T. (2011a). Aerodynamics of Knuckling Effect Shot Using Kick-robot. International Journal of Applied Sports Sciences, 23(2), 406-420. 
  15. Hong, S. & Asai, T. (2011b). Foot and Ball Behaviour During Impact Phase of Knuckling Shot. Korean Journal of Sport Science, 22(4), 2330-2336. 
  16. Hong, S. & Asai, T. (2014). Effect of panel shape of soccer ball on its flight characteristics. Scientific Reports, 4, 5068. 
  17. Hong, S. & Asai, T. (2017). Aerodynamic effects of dimples on soccer ball surfaces. Heliyon, 3, e00432. 
  18. Hong, S. & Asai, T. (2020). Effect of surface groove structure on the aerodynamics of soccer balls. Applied Sciences, 10, 5877. 
  19. Hong, S. & Asai, T. (2021). Aerodynamic differences between new and used soccer balls. Applied Sciences, 11, 7204. 
  20. Hong, S., Asai, T. & Seo, K. (2015). Visualization of air flow around soccer ball using a particle image velocimetry. Scientific Reports, 5, 15108. 
  21. Hong, S., Chung, C., Sakamoto, K., Nagahara, R. & Asai, T. (2013). A biomechanical analysis of the knuckling shot in football. In: Green, M., Gregson, W. & Drust, B. (eds) Science and Football VII, Routledge, London. 
  22. Hong, S., Goff, J. E. & Asai, T. (2019). Effect of a soccer ball's surface texture on its aerodynamics and trajectory. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233, 67-74.  https://doi.org/10.1177/1754337118794561
  23. Hong, S., Goff, J. E. & Asai, T. (2024). The aerodynamics of new design soccer balls using a three-dimensional printer. Applied Sciences, 14(9), 3932. 
  24. Hong, S., Park, S. & Byun, K. (2015). How Panel Design to Fly on the Modern Soccer Ball. The Korea Contents Association Conference 2015. 189-190. 
  25. Hussain, S. B., Shah, S. I. A. & Khan, M. K. A. (November 2019). Aerodynamic design considerations for a soccer ball. 2019 Sixth International Conference on Aerospace Science and Engineering (ICASE), 1-16. 
  26. Mehta, R. D. (1985). Aerodynamics of sports balls. Annual Review of Fluid Mechanics, 17, 151-189.  https://doi.org/10.1146/annurev.fl.17.010185.001055
  27. Mehta, R. D. (2008). Sports Ball Aerodynamics. In: Norstrud, H. (eds) Sport Aerodynamics. CISM International Centre for Mechanical Sciences, vol 506. Springer, Vienna. 
  28. Mizota, T., Kurogi, K., Ohya, Y., Okajima, A., Naruo, T. & Kawamura, Y. (2013). The strange flight behaviour of slowly spinning soccer balls. Scientific Reports, 3, 1871. 
  29. Naito, K., Hong, S., Koido, M., Nakayama, M., Sakamoto, K. & Asai, T. (2018). Effect of seam characteristics on critical Reynolds number in footballs. Mechanical Engineering Journal, 5, 17-00369. 
  30. Oggiano, L. & Saetran, L. (2010). Aerodynamics of modern soccer balls. Procedia Engineering, 2, 2473-2479.  https://doi.org/10.1016/j.proeng.2010.04.018
  31. Passmore, M. A., Rogers, D., Tuplin, S., Harland, A., Lucas, T. & Holmes, C. (2012). The aerodynamic performance of a range of FIFA-approved footballs. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 226, 61-70.  https://doi.org/10.1177/1754337111415768
  32. Sakamoto, Y., Hiratsuka, M. & Ito, S. (2021). Effect of soccer ball panels on aerodynamic characteristics and flow in drag crisis. Applied Sciences, 11(1), 296.