References
- D. K. Rajak, A. Kumar, A. Behera, and P. L. Menezes, Diamond-like carbon (Dlc) coatings: Classification, properties, and applications, Applied science, 11, 1 (2021). Doi: https://doi.org/10.3390/app11104445
- H. J. Park, J. H. Kim, and K. I. Moon, Effect of Fluorine Gas Addition for Improvement of Surface Wear Property of DLC Thin Film Depostied by using PECVD, Journal of Surface Science and Engineering, 54, 357 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.6.357
- Z. Ren, H. Qin, Y. Dong, G. L. Doll, and C. Ye, A boron-doped diamond like carbon coating with high hardness and low friction coefficient, Wear, 436, 203031 (2019). Doi: https://doi.org/10.1016/j.wear.2019.203031
- W. J. Kim, J. G. Kim, S. J. Park, and K. R. Lee, Effect of Si Addition on the Corrosion Resistance of DiamondLike Carbon (DLC) Films, Corrosion Science and Technology, 4, 226 (2005). https://koreascience.kr/article/JAKO200521161694088.page
- T. Nagai, M. Hiratsuka, A. Alnazi, H. Nakamori, and K. Hirakuri, Anticorrosion of DLC coating in acid solutions, Applied Surface Science, 552, 149373 (2021). Doi: https://doi.org/10.1016/j.apsusc.2021.149373
- J. G. Kim, K. R. Lee, Y. S. Kim, and W. S. Hwang, Electrochemical Evaluation of Si-Incroporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications, Corrosion Science and Technology, 6, 18 (2007). https://koreascience.kr/article/JAKO200721161736113.page
- A. Tyagi, R. S. Walia, Q. Murtaza, S. M. Pandey, P. K. Tyagi, and B. Bajaj, A critical review of diamond like carbon coating for wear resistance applications, International Journal of Refractory Metals & Hard Materials, 78, 107 (2019). Doi: https://doi.org/10.1016/j.ijrmhm.2018.09.006
- J. S. Song and T. W. Nam, The Effects of Interlayer on the DLC Coating, Corrosion Science and Technology, 10, 65 (2011). Doi: https://doi.org/10.14773/cst.2011.10.2.065
- I. Alaefour, S. Shahgaldi, J. Zhao, and X. Li, Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells, International Journal of Hydrogen Energy, 46, 11059 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2020.09.259
- H. Dong, S. He, X. Wang, C. Zhang, and D. Sun, Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC, Diamond & Related Materials, 110, 108156, (2020). Doi: https://doi.org/10.1016/j.diamond.2020.108156
- B. B. Han, D. Y. Ju, M. R. Chai, H. J. Zhao, and S. Sato, Corrosion Resistance of DLC Film-Coated SUS316L Steel Prepared by Ion Beam Enhanced Deposition, Advances in Materials Science and Engineering, 2019, Article ID 7480618 (2019). Doi: https://doi.org/10.1155/2019/7480618
- D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435
- G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085
- H. S. Heo and S. J. Kim, Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell, Corrosion Science and Technology, 21, 340 (2022). Doi: https://doi.org/10.14773/cst.2022.21.5.340
- H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115, 243 (2003). Doi: https://doi.org/10.1016/S0378-7753(03)00023-5
- C. Forsich, D. Heim, and T. Mueller, Influence of the deposition temperature on mechanical and tribological properties of a-C:H:Si coatings on nitrided and postoxidized steel deposited by DC-PACVD, Surface and Coating Technology, 203, 521 (2008). Doi: https://doi.org/10.1016/j.surfcoat.2008.05.044
- F. D. Duminica, R. Belchi, L. Libralesso, and D. Mercier, Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications, Surface and Coating Technology, 337, 396 (2018). Doi: https://doi.org/10.1016/j.surfcoat.2018.01.052
- D. Kek Merl, P. Panjan, M. Cekada, M. Kahn, and W. Waldhauser, Corrosion Properties of DLC-Coated Stainless Steel in Hanks Solution for Biomedical Applications, ECS Transactions, 35, 67 (2011). Doi: https://doi.org/10.1149/1.3571977
- W. Mingge, L. Congda, T. Dapeng, H. Tao, C. Guohai, and W. Donghui, Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate, Thin Solid Films, 616, 507 (2016). Doi: https://doi.org/10.1016/j.tsf.2016.07.043
- T. Spalvins and W. A. Brainard, Nodular Growth in Thick-Sputtered Metallic Coatings, Journal of Vacuum Science & Technology, 11, 1186 (1974). Doi: https://doi.org/10.1116/1.1318706
- P. Panjan, A. Drnovsek, P. Gselman, M. Cekada, and M. Panjan, Review of growth defects in thin films prepared by PVD techniques, Coatings, 10, 1 (2020). Doi: https://doi.org/10.3390/coatings10050447
- B. Haldar and P. Saha, Identifying defects and problems in laser cladding and suggestions of some remedies for the same, Materialstoday:Proceedings, 5, 13090 (2018). Doi: https://doi.org/10.1016/j.matpr.2018.02.297
- X. Xie, J. Li, M. Dong, H. Zhang, and L. Wang, Structure and properties of TiSiCN coatings with different bias volages by arc ion plating, Surface Topography: Metrology and Properties, 6, 014003 (2018). Doi: https://doi.org/10.1088/2051-672X/aaa6fd
- F. A. Delfin, S. P. Bruhl, C. Forsich, and D. Heim, Carbon based DLC films: Influence of the processing parameters on the structure and properties, Materia(Rio de Janeiro), 23, 1-8 (2018). Doi: https://doi.org/10.1590/S1517-707620180002.0395
- E. Bemporad, M. Sebastiani, F. Casadei, and F. Carassiti, Modelling, production and characterisation of duplex coatings (HVOF and PVD) on Ti-6Al-4V substrate for specific mechanical applications, Surface and Coating Technology, 201, 7652 (2007). Doi: https://doi.org/10.1016/j.surfcoat.2007.02.041
- P. Yi, D. Zhang, L. Peng, and X. Lai, Impact of Film Thickness on Defects and the Graphitization of Nanothin Carbon Coatings Used for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells, ACS Applied Materials and Interfaces, 10, 34561 (2018). Doi: https://doi.org/10.1021/acsami.8b08263
- J. Gunnars and A. Alahelisten, Thermal stresses in diamond coatings and their influence on coating wear and failure, Surface and Coating Technology, 80, 303 (1996). Doi: https://doi.org/10.1016/0257-8972(95)02436-0
- Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Subplantation model for film growth from hyperthermal species, Physical Review Letters, 41, 10468 (1990). Doi: https://doi.org/10.1103/PhysRevB.41.10468
- A. Dorner, C. Schurer, G. Reisel, G. Irmer, O. Seidel, and E. Muller, Diamond-like carbon-coated Ti6A14V: Influence of the coating thickness on the structure and the abrasive wear resistance, Wear, 249, 489 (2001). Doi: https://doi.org/10.1016/S0043-1648(01)00587-7
- Z. H. Liu, J. F. Zhao, and J. McLaughlin, A study of microstructural and electrochemical properties of ultra-thin DLC coatings on AlTiC substrates deposited using the ion beam technique, Diamond & Related Materials, 8, 56 (1999). Doi: https://doi.org/10.1016/S0925-9635(98)00364-1
- R. L. Boxman and S. Goldsmith, Macroparticle contamination in cathodic arc coatings: generation, transport and control, Surface and Coating Technology, 52, 39 (1992). Doi: https://doi.org/10.1016/0257-8972(92)90369-L
- L. Joska, J. Fojt, L. Cvrcek, and V. Brezina, Properties of titanium-alloyed DLC layers for medical applications, Biomatter, 4, 1 (2014). Doi: https://doi.org/10.4161/biom.29505
- E. Ilic, A. Pardo, T. Suter, S. Mischler, P. Schmutz, and R. Hauert, A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces, Surface and Coating Technology, 375, 402 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.07.055
- Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application, Applied Surface Science, 320, 274 (2014). Doi: https://doi.org/10.1016/j.apsusc.2014.09.049
- P. Yi, D. Zhang, D. Qiu, L. Peng, and X. Lai, Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 44, 6813 (2019). Doi: https://doi.org/10.1016/j.ijhydene.2019.01.176
- D. H. Shin and S. J. Kim, Electrochemical characteristics and damage behaviour of DLC-coated 316L stainless steel for metallic bipolar plates of PEMFCs, Transactions of the IMF, 101, 308 (2023). Doi: https://doi.org/10.1080/00202967.2023.2223835
- Y. Pauleau, Residual stresses in DLC films and adhesion to various substrates, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, pp. 102 - 136, Springer, New York, USA (2008). Doi: https://doi.org/10.1007/978-0-387-49891-1_4
- M. S. Park, D. Y. Kim, C. S. Shin, and W. R. Kim, Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate, Journal of Surface Science and Engineering, 54, 307 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.6.307
- A. H. S. Bueno, J. Solis, H. Zhao, C. Wang, T. A. Simoes, M. Bryant, and A. Neville, Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry, Wear, 394-395, 60 (2018). Doi: https://doi.org/10.1016/j.wear.2017.09.026
- ASTM G46-94, Standard Guide for Examination and Evaluation of Pitting Corrosion, ASTM International, West Conshohocken, PA (2018). https://www.astm.org/g0046-21.html
- D. H. Shin and S. J. Kim, Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC, Corrosion Science and Technology, 20, 451 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.451
- S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water, Corrosion Science, 110, 123 (2016). Doi: https://doi.org/10.1016/j.corsci.2016.04.033
- H. Parangusan, J. Bhadra, and N. Al-Thani, A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH, Emergent Materials, 4, 1187 (2021). Doi: https://doi.org/10.1007/s42247-021-00194-6
- D. H. Shin and S. J. Kim, Electrochemical Characteristics with NaCl Concentrations on Stainless Steels of Metallic Bipolar Plates for PEMFCs, Coatings, 13, 109 (2023). Doi: https://doi.org/10.3390/coatings13010109
- J. Zhang, Z. L. Wang, Z. M. Wang, and X. Han, Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines, Corrosion Science, 65, 397 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.08.045
- H. Kwon, S. S. Jang, Y. H. Park, T. S. Kim, Y. D. Kim, H. J. Nam, and Y. C. Joo, Investigation of the electrical contact behaviors in Au-to-Au thin-film contacts for RF MEMS switches, Journal of Micromechanics and Microengineering, 18, 1 (2008). Doi: https://doi.org/10.1088/0960-1317/20/8/085025
- F. Cheng and J. Sun, Proc. 65th IEEE Holm Conference on Electrical Contacts, pp. 250 - 256, The Institute of Electrical and Electronics Engineers Inc., USA (2019). Doi: https://doi.org/10.1109/HOLM.2019.8923685
- H. S. Heo and S. J. Kim, Investigation of Electrochemical Characteristics and Interfacial Contact Resistance of TiN-Coated Titanium as Bipolar Plate in Polymer Electrolyte Membrane Fuel Cell, Coatings, 13, 123 (2023). Doi: https://doi.org/10.3390/coatings13010123