DOI QR코드

DOI QR Code

Structure of Surface Oxide Formed on Zinc-Coated Steel Sheet During Hot Stamping

  • Received : 2024.02.07
  • Accepted : 2024.05.25
  • Published : 2024.06.30

Abstract

During hot stamping of hot-dip zinc-coated steel sheets such as hot-dip galvanized steel sheets and hot-dip galvannealed steel sheets, an oxide mainly composed of ZnO is formed on the sheet surface. However, excessive formation of ZnO can lead to a decrease in the amount of metal Zn in the coating layer, decreasing the corrosion resistance of hot-stamped members. Therefore, it is important to suppress excessive formation of ZnO. While the formation of Al oxides and Mn oxides along with ZnO layer during the hot stamping of hot-dip zinc-coated steel sheets can affect ZnO formation, crystal structures of such oxides have not been elucidated clearly. Thus, this study aimed to analyze structures of oxides formed during hot stamping of hot-dip galvannealed steel sheets using transmission electron microscopy. Results indicated the formation of an oxide layer comprising ZnAl2O4 at the interface between ZnO and the coating layer with Mn3O4 at the outermost of an oxide layer.

Keywords

References

  1. H. Karbasian and A. E. Tekkaya, A review on hot stamping, Journal of Materials Processing Technology, 210, 2103 (2010). Doi: https://doi.org/10.1016/j.jmatprotec.2010.07.019
  2. M. Maikranz-Valentin, U. Weidig, U. Schoof, H. H. Becker, and K. Steinhoff, Components with Optimised Properties due to Advanced Thermo-mechanical Process Strategies in Hot Sheet Metal Forming, Steel Research International, 79, 92 (2008). Doi: https://doi.org/10.1002/srin.200806322
  3. N. Kojima, Journal of the Japan Society for Technology of Plasticity, 46, 595 (2005).
  4. K. Kusumi, S. Yamamoto, T. Takeshita, S. Nakamura, M. Abe, and M. Suehiro, Proc. The 149th ISIJ Meeting, p. 556, The Iron and Steel Institute of Japan, Yokohama University, Yokohama (2005).
  5. T. Suzuki, T. Niinomi, K. Nakashima, T. Nishibata, and N. Kojima, Proc. The 155th ISIJ Meeting, p. 598, The Iron and Steel Institute of Japan, Musashi Institute of Technology, Setagaya (2008).
  6. K. Hikida, T. Nishibata, H. Kikuchi, T. Suzuki, and N. Nakayama, Development of TS1800MPa, Grade Hot Stamping Steel Sheet, Materia Japan, 52, 68 (2013). Doi: https://doi.org/10.2320/materia.52.68
  7. K. Mori, P. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, and J. Yanagimoto, Hot stamping of ultra-high strength steel parts, CIRP Annals, 66, 755 (2017). Doi: https://doi.org/10.1016/j.cirp.2017.05.007
  8. U. Paar, H. Becker, and M. Alsmann, Proc. 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, p. 153, Verlag Wissenschaftliche Scripten, Auerbach (2008).
  9. M. Fleischanderl, S. Kolnberger, J. Faderl, G. Landl, A. Raab, and W. Brandstatter, Method for Producing a Hardened Steel Part, Patents, US20070256808 (2007). https://patents.google.com/patent/US20070256808
  10. Y. Yoshikawa, K. Itami, K. Fukui, T. Toki, S. Sudo, A. Obayashi, and M. Ichikawa, Hot press formed product and method for production thereof, Patents, EP1630244 (2009). https://patents.google.com/patent/EP1630244B1/en?oq=EP1630244
  11. P. Drillet, D. Spehner, and R. Kefferstein, Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product, Patents, WO2008053273 (2008). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008053273
  12. L. Dosdat, J. Petitjean, T. Vietoris, and O. Clauzeau, Corrosion Resistance of Different Metallic Coatings on Press Hardened Steels for Automotive, Steel Research International, 82, 726 (2011). Doi: https://doi.org/10.1002/srin.201000291
  13. R. Autengruber, G. Luckeneder, and A.W. Hassel, Corrosion of press-hardened galvanized steel, Corrosion Science, 63, 12 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.04.048
  14. D. W. Fan, H. S. Kim, J. K. Oh, K. G. Chin, and B. C. D. Cooman, Coating Degradation in Hot Press Forming, ISIJ International, 50, 561 (2010). Doi: https://doi.org/10.2355/isijinternational.50.561
  15. A. Sengoku, H. Takebayashi, N. Okamoto, and H. Inui, Structural Changes in Galvannealed Coating during Hot-stamping Heating, Tetsu-to-Hagane, 104, 331 (2018). Doi: https://doi.org/10.2355/tetsutohagane.TETSU-2017-100
  16. C. W. Lee, W. S. Choi, Y. R. Cho, and B. C. D. Cooman, Surface Oxide Formation during Rapid Heating of Zncoated Press Hardening Steel, ISIJ International, 54, 2364 (2014). Doi: https://doi.org/10.2355/isijinternational.54.2364
  17. R. Autengruber, G. Luckeneder, A. S. Kolnberger, J. Federl, and A. W. Hassel, Surface and Coating Analysis of Press-Hardened Hot-Dip Galvanized Steel Sheet, Steel Research International, 83, 1005 (2012). Doi: https://doi.org/10.1002/srin.201200068
  18. W. Gaderbauer, M. Arndt, T. Truglas, T. Steck, N. Klingner, D. Stifter, J. Faderl, and H. Groiss, Effects of alloying elements on surface oxides of hot-dip galvanized press hardened steel, Surface and Coatings Technology, 404, 126466 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126466
  19. R. Hansson, P. C. Hayes, and E. Jak, Experimental study of phase equilibria in the Al-Fe-Zn-O system in air, Metallurgical and Materials Transactions B, 35, 633 (2004). Doi: https://doi.org/10.1007/s11663-004-0004-x
  20. M. Shamsuddin, Physical Chemistry of Metallurgical Processes, Second Edition, Springer Cham (2021). Doi: https://doi.org/10.1007/978-3-030-58069-8