DOI QR코드

DOI QR Code

Assessment Corrosion and Bioactive Behavior of Bioglass Coating on Co-Cr-Mo Alloy By Electrophoretic Deposition For Biomedical Applications

  • Areege K. Abed (Production Engineering and Metallurgy Department, University of Technology) ;
  • Ali. M. Mustafa (Production Engineering and Metallurgy Department, University of Technology) ;
  • Ali M. Resen (Production Engineering and Metallurgy Department, University of Technology)
  • Received : 2024.02.23
  • Accepted : 2024.04.22
  • Published : 2024.06.30

Abstract

A layer-by-layer coating was produced using electrophoretic deposition for a HA/Al2O3 coating layer and a bioglass coating layer on Co-Cr-Mo alloy with a roughness of 0.5 ㎛ (400 emery paper SiC). The corrosion behaviour was analyzed by assessing the coating layers' exceptional corrosion resistance, which outperformed the substrate. Cr ion release test using AAS was carried out, indicating that factional graded coating inhibited ion release from the uncoated substrate to coated sample. The porosity was expressed as a percentage, representing the extent of imperfections on the surface of all coatings. These imperfections fell within an acceptable range of 1% to 3%. The roughness of the coated surface was measured using atomic force microscopy, which revealed an excellent roughness value of 3.32 nm. Tape test technique for adhesion revealed that the removal area of the substrate coating layer varied by 11.92%. X-ray diffraction analysis confirmed the presence of all coating material peaks and verified phases of the deposited coating layers. These findings provided evidence that the coating composition remains unaffected by the electrophoretic deposition process. The bioactivity was assessed by immersion in a simulated bodily fluid, which revealed the formation of HCA during a period of 5 days.

Keywords

References

  1. S. Tharani Kumar, S. Prasanna Devi, C. Krithika, and R. N. Raghavan, Review of Metallic Biomaterials in Dental Applications, Journal of Pharmacy & Bioallied Sciences, 12, S14 (2020). Doi: https://doi.org/10.4103/JPBS.JPBS_88_20
  2. Joel Faure, Richard Drevet, Sylvain Potiron, Doina Margareta Gordin, Hassane Oudadesse, Thierry Gloriant, and Hicham Benhayoune, Electrophoretic deposition of bioactive glass coatings on Ti12Mo5Ta alloy, Key Engineering Materials, 507, 135 (2012). https://doi.org/10.4028/www.scientific.net/KEM.507.135
  3. L. L. Hench, An Introduction to Bioceramics 2nd ed., pp. 71 - 85, World Scientific Publishing Co Pte Ltd., Singapore (2013). Doi: https://doi.org/10.1142/9781908977168_0004
  4. F. Baino, S. Ferraris, M. Miola, E. Verne, I. Evans, and O. Bretcanu, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, pp. 35 - 67, Woodhead Publishing, UK (2018). Doi: https://doi.org/10.1016/B978-0-08-102196-5.00002-1
  5. Marwan B. Hussein, Ali M. Mustafa, Makarim H. Abdulkareem, and Ahmed A. Alamiery, Comparative corrosion performance of YSZ-coated Ti-13Zr-13Nb alloy and commercially pure titanium in orthopedic implants, South African Journal of Chemical Engineering, 48, 40 (2024). Doi: https://doi.org/10.1016/j.sajce.2024.01.005
  6. E. Denes, G. Barriere, E. Poli, and G. Leveque, Alumina biocompatibility, Journal of Long-Term Effects of Medical Implants, 28, 9 (2018). Doi: https://doi.org/10.1615/JLongTermEffMedImplants.2018025635
  7. X. Q. Zhang, L. H. Yin, M. Tang, and Y. P. Pu, ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts, Biomedical and Environmental Sciences, 24, 661 (2011). Doi: https://doi.org/10.3967/0895-3988.2011.06.011
  8. K. Ishikawa, S. Matsuya, Y. Miyamoto, and K. Kawate, 9.05 - Bioceramics, Comprehensive Structural Integrity, 9, 169 (2007). Doi: https://doi.org/10.1016/B0-08-043749-4/09146-1
  9. Marwan B. Hussein, Ali M. Mustafa, and Makarim H. Abdulkareem, A Comparative Study on Dip Coating and Corrosion Behavior of Ti-13Zr-13Nb and Commercially Pure Titanium Alloys Coated with YSZ by Taguchi Design, Salud, Ciencia y Tecnologia-Serie de Conferencias, 3, 847 (2024). Doi: https://doi.org/10.56294/sctconf2024847
  10. T. Moskalewicz, A. Kukaszczyk, A. Kruk, M. Kot, D. Jugowiec, B. Dubiel, A. Radziszewska, Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co-28Cr-5Mo alloy, Materials Chemistry and Physics, 199, 144 (2017). Doi: https://doi.org/10.1016/j.matchemphys.2017.06.064
  11. M. Mehdipour, A. Afshar, and M. Mohebali, Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study, Applied Surface Science, 258, 9832 (2012). Doi: https://doi.org/10.1016/J.APSUSC.2012.06.038
  12. L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, 52, 1 (2007). Doi: https://doi.org/10.1016/j.pmatsci.2006.07.001
  13. F. M. Klenke, Y. Liu, H. Yuan, E. B. Hunziker, K. A. Siebenrock, and W. Hofstetter, Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo, Journal of Biomedical Materials Research A, 85, 777 (2008). Doi: https://doi.org/10.1002/JBM.A.31559
  14. K. A. Hing, S. M. Best, and W. Bonfield, Characterization of porous hydroxyapatite, Journal of Materials Science: Materials in Medicine, 10, 135 (1999). Doi: https://doi.org/10.1023/A:1008929305897
  15. M. Smiga-Matuszowicz, B. Janicki, K. Jaszcz, J. Kukaszczyk, M. Kaczmarek, M. Lesiak, A. L. Sieron, W. Simka, M. Mierzwinski, D. Kusz, Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid, Materials Science and Engineering C, 45, 64 (2014). Doi: https://doi.org/10.1016/J.MSEC.2014.08.069
  16. K. Webb, V. Hlady, and P. A. Tresco, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization, Journal of Biomedical Materials Research, 41, 422 (1998) Doi: https://doi.org/10.1002/(sici)1097-4636(19980905)41:3<422::aidjbm12>3.0.co;2-k
  17. S. Begum, W. E. Johnson, T. Worthington, and R. A. Martin, The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass, Biomedical Materials, 11, 15006 (2016). Doi: https://doi.org/10.1088/1748-6041/11/1/015006
  18. F. Pishbin, A. Simchi, M. P. Ryan, and A. R. Boccaccini, Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications, Surface and Coatings Technology, 205, 5260 (2011). Doi: https://doi.org/10.1016/j.surfcoat.2011.05.026
  19. A. M. Mustafa, F. F. Sayyid, N. Betti, L. M. Shaker, M. M. Hanoon, A. A. Alamiery, A. A. H. Kadhum, and M. S. Takriff, Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl) phenyl)-1, 3, 4-triazole, South African Journal of Chemical Engineering, 39, 42 (2022). Doi: https://doi.org/10.1016/j.sajce.2021.11.009
  20. A. M. Mustafa, F. F. Sayyid, N. Betti, M. M. Hanoon, Ahmed Al-Amiery, A. A. H. Kadhum, and M. S. Takriff, Inhibition Evaluation of 5-(4-(1H-pyrrol-1-yl) phenyl)-2-mercapto-1, 3, 4-oxadiazole for the Corrosion of Mild Steel in an Acidic Environment: Thermodynamic and DFT Aspects, Tribologia Finnish Journal of Tribology, 38, 39 (2021). Doi: https://doi.org/10.30678/fjt.105330
  21. A. K. Khudhair, A. M. Mustafa, M. M. Hanoon, A. AlAmiery, L. M. Shaker, T. Gazz, A. B. Mohamad, A. H. Kadhum, and M. S. Takriff, Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl, Progress in Color, Colorants and Coatings, 15, 111 (2022). Doi: https://doi.rog/10.30509/PCCC.2021.166815.1111
  22. Mustafa, A. M., Z. S. Abdullahe, F. F. Sayyid, M. M. Hanoon, A. A. Al-Amiery, and W. N. R. W. Isahak, 3-Nitrobenzaldehyde-4-phenylthiosemicarbazone as Active Corrosion Inhibitor for Mild Steel in a Hydrochloric Acid Environment, Progress in Color, Colorants and Coatings, 15, 285 (2022). Doi: https://doi.org/10.30509/pccc.2021.166869.1127
  23. Firas F. Sayyid, Ali M. Mustafa, Mahdi M. Hanoon, Lina M. Shaker, and Ahmed A. Alamiery, Corrosion Protection Effectiveness and Adsorption Performance of Schiff Base-Quinazoline on Mild Steel in HCl Environment, Corrosion Science and Technology, 21, 77 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.77
  24. A. N. Jasim, A. Mohammed, A. M. Mustafa, F. F. Sayyid, H. S. Aljibori, W. K. Al-Azzawi, A. A. AlAmiery, and E. A. Yousif, Corrosion Inhibition of Mild Steel in HCl Solution by 2-acetylpyrazine: Weight Loss and DFT Studies on Immersion Time and Temperature Effects, Progress in Color, Colorants and Coatings, 17, 333 (2024). Doi: https://doi.org/10.30509/PCCC.2024.167231.1261
  25. I. A. Annon, K. K. Jlood, N. Betti, T. S. Gaaz, M. M. Hanoon, F. F. Sayyid, A. M. Mustafa, and A. A. Alamiery, Unlocking corrosion defense: investigating Schiff base derivatives for enhanced mild steel protection in acidic environments, International Journal Corros. Scale Inhib., 13, 727 (2024). Doi: https://doi.org/10.17675/2305-6894-2024-13-2-5
  26. Firas F. Sayyid, Ali M. Mustafa, Slafa I. Ibrahim, Mahdi M. Hanoon, A. A. H. Kadhum, W. N. R. W. Isahak, and A. A. Al-amiery, Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies, Corrosion Science and Technology, 22, 73 (2023). Doi: https://doi.org/10.14773/cst.2023.22.2.73
  27. M. K. Abbass, K. M. Raheef, I. A. Aziz, M. M. Hanoon, A. M. Mustafa, W. K. Al-Azzawi, A. A. Al-Amiery, and A. A. H. Kadhum, Evaluation of 2-Dimethylaminopropionamidoantipyrine as a Corrosion Inhibitor for Mild Steel in HCl Solution: A Combined Experimental and Theoretical Study, Progress in Color, Colorants and Coatings, 17, 1 (2024). Doi: https://doi.org/10.30509/PCCC.2023.167134.1216
  28. M. Taha Mohamed, S. A. Nawi, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, A. A. Al-Amiery, A. A. H. Kadhum, and W. K. Al-Azzawi, Revolutionizing Corrosion Defense: Unlocking the Power of Expired BCAA, Progress in Color, Colorants and Coatings, 17, 97 (2024). Doi: https://doi.org/10.30509/PCCC.2023.167156.1228
  29. A. A. Zainulabdeen, Z. A. Betti, D. M. Jamil, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, T. S. Gaaz and A. Alamiery, Inhibition mechanism and corrosion protection of mild steel in hydrochloric acid using 2-hydroxynaphthaldehyde thiosemicarbazone (2HNT): Experimental and theoretical analysis, International Journal of Corrosion and Scale Inhibition, 13, 935 (2024). Doi: https://doi.org//10.17675/2305-6894-2024-13-2-16