DOI QR코드

DOI QR Code

A Study on the Correlation between Cement Chlorine Content and Concrete Slump, Compressive Strength

시멘트 염소 함량과 콘크리트의 슬럼프, 압축강도 간의 상관관계 연구

  • Kyoung-Seok Kim (R&D Center, Asiacement Co.) ;
  • Dong-Kyun Seo (R&D Center, Asiacement Co.) ;
  • Ji-Wan Woo (R&D Center, Asiacement Co.) ;
  • Jae-Won Choi (R&D Center, Asiacement Co.) ;
  • Byeong-Know You (R&D Center, Asiacement Co.)
  • 김경석 (아세아시멘트 기술연구소) ;
  • 서동균 (아세아시멘트 기술연구소) ;
  • 우지완 (아세아시멘트 기술연구소) ;
  • 최재원 (아세아시멘트 기술연구소) ;
  • 유병노 (아세아시멘트 기술연구소)
  • Received : 2024.04.15
  • Accepted : 2024.05.23
  • Published : 2024.06.30

Abstract

This study was analyzed the relationship between concrete slump, compressive strength and other factors such as the quantity of chloride or others using statistics method. The amount of chloride in cement was selected to range from 236 to 794 ppm, and cement that satisfied the KS L 5201 standard for other physical properties was used for this experiment. As a result, no factors had a interrelationship for initial slump and the strong-negative correlation between concrete slump elapsed time and the quantity of chloride. The proportion of chloride was shown as a strong-positive correlation for compressive strength from 1-day to 7-day curing. However, there was no correlation between chloride and compressive strength at 28-day curing.

본 연구에서는 콘크리트 슬럼프 및 압축강도와 시멘트 염소 함량을 포함한 기타 요인과의 상관관계에 대해 통계적으로 분석하였다. 시멘트 염소 함량은 236 ~ 794 ppm 범위로 선정했으며, 기타 물성들은 KS L 5201 규격에 만족하는 시멘트를 사용하였다. 분석 결과, 어떠한 요인들과도 초기 슬럼프와는 상관관계가 존재하지 않았다. 슬럼프 경시변화에서의 염소 성분은 강한 음의 상관관계를 나타내고 있으며, 1일 ~ 7일 압축강도에서는 강한 양의 상관관계를 갖고 있는 것으로 분석되었다. 한편, 28일 압축강도에서는 염소 성분과 압축강도 간의 상관성이 없는 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 한국산업기술기획평가원 탄소중립산업핵심기술개발사업(RS-2023-00261157) 지원으로 수행되었습니다.

References

  1. Balonis, M., Lothenbach, B., Le Saout, G., Glasser, F.P. (2010). Impact of chloride on the mineralogy of hydrated Portland cement systems, Cement and Concrete Research, 40(7), 1009-1022.
  2. Beaudoin, J.J., Ramachandran, V.S. (1992). A new perspective on the hydration characteristics of cement phases, Cement and Concrete Research, 22(4), 689-694.
  3. Ben-Dor, L., Perez, D., (1976). Influence of admixtures on strength development of Portland cement and on the microstructure of tricalcium silicate, Journal of Materials Science, 11, 239-245.
  4. Bogue, R.H., Lerch, W. (1934). Hydration of Portland cement compounds, Industrial & Engineering Chemistry, 26(8), 837-847.
  5. Brown, P.W., Harner, C.L., Prosen, E.J. (1986). The effect of inorganic salts on tricalcium silicate hydration, Cement and Concrete Research, 16(1), 17-22.
  6. Choi, J.W., You, B.K., Seo, D.K., Kim, K.S., Han, M.C. (2023). Effect of chlorine content in clinker on setting and compressive strength of early strength cement, Journal of Korean Recycled Construction Resources Institute, 11(3), 218-225 [in Korean].
  7. Collepardi, M., Massida, L. (1971). Hydration of tricalcium silicate, Journal of the American Ceramic Society, 54(9), 419-422.
  8. Dorn, T., Blask, O., Stephan, D. (2022). Acceleration of cement hydration-A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures, Construction and Building Materials, 323, 126554.
  9. El-Didamony, H., Sharara, A.M., Helmy, I.M., El-Aleem, S.A. (1996). Hydration characteristics of β-C2S in the presence of some accelerators, Cement and Concrete Research, 26(8), 1179-1187.
  10. Galan, I., Glasser, F.P. (2015). Chloride in cement, Advances in Cement Research, 27(2), 63-97.
  11. Kim, K.S., Seo, S.K., Chu, Y.S. (2018). Extraction of potassium chloride using fly ash from cement bypass dust, Journal of Ceramic Processing Research, 19(3), 231-235.
  12. Kondo, R., Daimon, M., Sakai, E., Ushiyama, H. (1977). Influence of inorganic salts on the hydration of tricalcium silicate, Journal of Applied Chemistry and Biotechnology, 27(1), 191-197.
  13. Lee, Y.J., Kim, N.I., Cho, J.H., Seo, S.K., Chu, Y.S. (2021). A study on the characteristics of clinker and cement as chlorine content, Resources Recycling, 30(5), 10-16 [in Korean].
  14. Nicoleau, L. (2011). Accelerated growth of calcium silicate hydrates: experiments and simulations, Cement and Concrete Research, 41(12), 1339-1348.
  15. Odler, I., Abdul-Maula, S. (1987). Investigations on the relationship between porosity structure and strength of hydrated Portland cement pastes III. Effect of clinker composition and gypsum addition, Cement and Concrete Research, 17(1), 22-30.
  16. Odler, I., Wonnemann, R. (1983). Effect of alkalies on Portland cement hydration: I. Alkali oxides incorporated into the crystalline lattice of clinker minerals, Cement and Concrete Research, 13(4), 477-482.
  17. Ogirigbo, O.R., Ukpata, J. (2017). Effect of chlorides and curing duration on the hydration and strength development of plain and slag blended cements, Journal of Civil Engineering Research, 7(1), 9-16.
  18. Osbaeck, B., Johansen, V. (1989). Particle size distribution and rate of strength development of Portland cement, Journal of the American Ceramic Society, 72(2), 197-201.
  19. Rosskopf, P. A., Linton, F. J., Peppler, R. B. (1975). Effect of Various Accelerating Chemical Admixtures on Setting and Strength Development of Concrete, Journal of Testing and Evaluation, 3(4), 322-330.
  20. Sanitsky, M.A., (1992). Correlation Between the Crystal Structure of Calcium Minerals and their Reactivity with Water, International Congress on Chemistry of Cement, New Delhi, 292-297.
  21. Singh, N.B., Ojha, P.N. (1981). Effect of CaCl2 on the hydration of tricalcium silicate, Journal of Materials Science, 16, 2675-2681.
  22. Thomas, J.J., Allen, A.J., Jennings, H.M. (2009). Hydration kinetics and microstructure development of normal and CaCl2-accelerated tricalcium silicate pastes, The Journal of Physical Chemistry C, 113(46), 19836-19844.
  23. Xie, Y., Quan, C. (2024). Improved ettringite stabilization by calcium carbonate and calcium nitrate additions in ternary PC-CSA-C$ PC-CSA-C$ systems, Cement and Concrete Research, 175, 107383.
  24. Young, J.F., Tong, H.S., Berger, R.L. (1977). Compositions of solutions in contact with hydrating tricalcium silicate pastes, Journal of the American Ceramic Society, 60(5-6), 193-198.
  25. Zhu, H., Wang, Y., Jing, N., Jiang, X., Lv, G., Yan, J. (2019). Study on the evolution and transformation of chlorine during co-processing of hazardous waste incineration residue in a cement kiln, Waste Management & Research, 37(5), 495-501.