DOI QR코드

DOI QR Code

물-결합재 비율과 섬유 종류에 따른 고연성 복합재료의 압축 및 인장특성

Compressive and Tensile Properties of Highly Ductile Composites According to Water-binder Ratio and Fiber Type

  • 박세언 (전남대학교 건축토목공학과) ;
  • 이방연 (전남대학교 건축학부)
  • Se-Eon Park (Department of Architecture and Civil Engineering, Chonnam National University) ;
  • Bang Yeon Lee (School of Architecture, Chonnam National University)
  • 투고 : 2024.03.30
  • 심사 : 2024.05.16
  • 발행 : 2024.06.30

초록

이 연구의 목적은 고연성·친환경 건설 재료인 하이볼륨 슬래그 섬유보강 복합재료에서 물결합재비와 섬유 종류가 압축강도와 인장성능에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 물결합재비와 섬유의 종류를 다르게 혼입하여 4가지 배합의 실험체를 제작하였고, 압축 및 인장실험을 수행하였다. 실험 결과, 압축강도는 섬유 종류에 따른 영향은 미미하였으나, WB40 계열 배합에 비해 WB50 계열 배합이 29 % 낮은 것으로 나타나 물결합재비에 따른 영향이 큰 것으로 나타났다. 반면 인장특성에는 물결합재비 영향보다 섬유의 종류에 따른 영향이 큰 것으로 나타났다. 인장변형성능은 2.9 %에서 6.2 %로 측정되었으며, PVA 계열 배합에 비해 PE 계열 배합이 1.63 배~2.14 배 높은 것으로 나타났다. 또한 PE 계열 배합의 균열패턴도 더 우수한 것으로 나타났다.

The purpose of this study is to experimentally investigate the effect of water-binder ratio and fiber type on the compressive strength and tensile performance of fiber reinforced highly ductile composites. To achieve this, four different mixtures were prepared by varying the water-binder ratio and fiber type, and compression and tension tests were conducted. The test results showed that the influence of fiber type on compressive strength was minimal, however, the WB50 series mixture exhibited a 29 % lower strength compared to the WB40 series mixture, indicating a significant effect of the water-binder ratio. On the other hand, the effect of fiber type on tensile properties was found to be more significant than that of the water-binder ratio. Tensile strain capacity ranged from 2.9 % to 6.2 %, with PE series mixtures showing 1.63 to 2.14 times higher performance compared to PVA series mixtures. Additionally, the crack patterns of the PE series mixtures were superior than those of the PVA series mixtures.

키워드

과제정보

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A4A1033838).

참고문헌

  1. Abdulkadir, I., Mohammed, B.S., Liew, M.S., Wahab, M.M.B.A., Zawawi, N.A.W.A., As'ad, S. (2020). A review of the effect of waste tire rubber on the properties of ECC, International Journal of Advanced and Applied Sciences, 7(8), 105-116.
  2. Elahi, M.M.A., Hossain, M.M., Karim, M.R., Zain, M.F.M., Shearer, C. (2020). A review on alkali-activated binders: materials composition and fresh properties of concrete, Construction and Building Materials, 260, 119788.
  3. Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q., Li, V.C. (2014). Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Composites Part B: Engineering, 60, 359-370.
  4. Gholampour, A., Ozbakkaloglu, T. (2017). Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag, Journal of Cleaner Production, 162, 1407-1417.
  5. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC), Japan: Japan Society of Civil Engineers.
  6. Kanda, T., Li, V.C. (2006). Practical design criteria for saturated pseudo strain hardening behavior in ECC, Journal of Advanced Concrete Technology, 4(1), 59-72.
  7. Kang, S.T., Choi, J.I., Lee, B.Y. (2020). Compressive strength and tensile properties of high volume slag cement composite incorporating phase change material, Journal of the Korean Recycled Construction Resources Institute, 8(2), 183-189.
  8. Khaloo, A.R., Dehestani, M., Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles, Waste Management, 28(12), 2472-2482.
  9. Kwon, S.O., Bae, S.H., Lee, H.J., Jung, S.H. (2014). Characteristics for reinforcement corrosion and chloride ion diffusion of high volume fly ash concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39.
  10. Lao, J.C., Huang, B.T., Fang, Y., Xu, L.Y., Dai, J.G., Shah, S.P. (2023). Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement and Concrete Research, 165, 107075.
  11. Li, V.C., Wang, S., Wu, C. (2001). Tensile strain-hardening behavior of PVA-ECC, Materials Journal, 98(6), 483-492.
  12. Maalej, M., Li, V.C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites, Journal of Materials in Civil Engineering, 6(4), 513-528.
  13. Malhotra, V.M. (2002). Introduction: sustainable development and concrete technology, Concrete International, 24(7), 22.
  14. Ozbay, E., Erdemir, M., Durmus, H.I. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties-a review, Construction and Building Materials, 105, 423-434.
  15. Shi, C., Roy, D., Krivenko, P. (2003). Alkali-Activated Cements and Concretes, CRC press.
  16. Wu, M., Zhang, Y., Jia, Y., She, W., Liu, G. (2020). Study on the role of activators to the autogenous and drying shrinkage of lime-based low carbon cementitious materials, Journal of Cleaner Production, 257, 120522.
  17. Yu, J., Yao, J., Lin, X., Li, H., Lam, J.Y., Leung, C.K., Sham, I.M., Shih, K. (2018). Tensile performance of sustainable strain-hardening cementitious composites with hybrid PVA and recycled PET fibers, Cement and Concrete Research, 107, 110-123.
  18. Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B.R., Li, V.C. (2020). Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC), Composites Part B: Engineering, 184, 107741.
  19. Zhong, H., Zhang, M. (2021). Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cement and Concrete Composites, 122, 104167.