DOI QR코드

DOI QR Code

An Analysis of the Support Policy for Small Businesses in the Post-Covid-19 Era Using the LDA Topic Model

LDA 토픽 모델을 활용한 포스트 Covid-19 시대의 소상공인 지원정책 분석

  • Kyung-Do Suh (Industry-academic Cooperation Foundation, Kumoh National Instiute of Technology University) ;
  • Jung-il Choi (Department of Police & Security Administration Taegu Science University University) ;
  • Pan-Am Choi (Department of Security and Security, Kyungnam University) ;
  • Jaerim Jung (Department of Virtual Reality, Namseoul University)
  • 서경도 (금오공과대학교 산학협력단) ;
  • 최정일 (대구과학대학교 경찰경호행정학과) ;
  • 최판암 (경남대학교 경호보안학과) ;
  • 정재림 (남서울대학교 가상현실학과)
  • Received : 2024.06.15
  • Accepted : 2024.06.20
  • Published : 2024.06.28

Abstract

The purpose of the paper is to suggest government policies that are practically helpful to small business owners in pandemic situations such as COVID-19. To this end, keyword frequency analysis and word cloud analysis of text mining analysis were performed by crawling news articles centered on the keywords "COVID-19 Support for Small Businesses", "The Impact of Small Businesses by Response System to COVID-19 Infectious Diseases", and "COVID-19 Small Business Economic Policy", and major issues were identified through LDA topic modeling analysis. As a result of conducting LDA topic modeling, the support policy for small business owners formed a topic label with government cash and financial support, and the impact of small business owners according to the COVID-19 infectious disease response system formed a topic label with a government-led quarantine system and an individual-led quarantine system, and the COVID-19 economic policy formed a topic label with a policy for small business owners to acquire economic crisis and self-sustainability. Focusing on the organized topic label, it was intended to provide basic data for small business owners to understand the damage reduction policy for small business owners and the policy for enhancing market competitiveness in the future pandemic situation.

본 논문은 COVID-19와 같은 팬데믹 상황에서 소상공인에게 실질적으로 도움이 되는 정부 정책을 제언하는데 목적이 있다. 이를 위해 'COVID-19 소상공인 지원', 'COVID-19 감염병 대응체계에 따른 소상공인 영향', 'COVID-19 소상공인 경제정책' 키워드를 중심으로 뉴스 기사를 크롤링하여 텍스트 마이닝 분석의 키워드 빈도분석과 워드클라우드 분석을 수행하였고, LDA 토픽 모델링 분석을 통해 주요 이슈를 파악하였다. LDA 토픽 모델링을 수행한 결과 소상공인 지원 정책은 정부의 현금성 지원과 금융지원으로 토픽 레이블을 구성하였고, COVID-19 감염병 대응체계에 따른 소상공인 영향은 정부 주도의 방역체계와 개인 주도의 방역체계로 토픽 레이블을 구성하였으며, COVID-19 경제정책은 경제위기와 자생력을 갖추기 위한 소상공인 정책으로 토픽 레이블을 구성하였다. 구성한 토픽레이블을 중심으로 향후 팬데믹 상황에서 소상공인 피해 감면 정책과 소상공인이 시장경쟁력 제고 정책에 대해 파악할 수 있는 기초자료를 제공하고자 하였다.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2019S1A5A2A03052761).

References

  1. https://news.kbs.co.kr/news/pc/view/view.do?ncd=7951135
  2. J. M. You. & K. J. Lee. (2023). Research Trends in Liberal Arts Studies Before and After the COVID-19 Pandemic Using LDA Topic Modeling. Korean Journal of General Education, 17(2), 39-53. DOI : 10.46392/kjge.2023.17.2.39
  3. K. D. Suh, J. I. Choi, P. A. Choi, J. R. Jung. (2022). A Study on Policy Support for Emergency Relief Grant for COVID-19 through Causal Loop Analyses. Journal of the Korea Convergence Society, 13(5), 531-539. https://doi.org/10.15207/JKCS.2022.13.05.531
  4. Statistics Korea. (2020, 12. 28) Survey Results of Small Businesses .[Press Release] https://kostat.go.kr/board.es?mid=a10301010000&bid=12029&act=view&list_no=416032&tag=&nPage=1&ref_bid=
  5. https://www.sedaily.com/NewsView/29VXIXOZQ5
  6. J. S. Kim, H. W. KIM, & D. H. Shin. (2021). Analysis of Major COVID-19 Issues Using Unstructured Big Data. Knowledge Management Review, 22(2), 145-165. DOI : 10.15813/KMR.2021.22.2.008
  7. S. T. Kim. (2014). The effects of government policy and characteristics of micro-enterprise on business strategy and performance. Chungbuk National University Doctoral Dissertation.
  8. J. H. Ku & S. J. Lee. (2003). Current Status, Evaluation, and Implications of Support Policy for Small Businesses in Response to COVID-19. KIF Analysis Report. 36-38
  9. https://www.korea.kr/special/policyCurationView.do?newsId=148872965
  10. D. M. Blei, A. Y. Ng, , & M. I. Jordan. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
  11. S. Y. Kim, (2023). Discovering Policy Implications from Analysis of News Big-data Related to Digital Issues Based on LDA Topicmodeling. Korean Public Administration Quarterly. Korean Association of Government Studies. DOI : 10.21888/kpaq.2023.9.35.3.499
  12. E. H. Kim,& Y. H. Suh. (2020). A Method of Calculating Topic Keywords for Topic Labeling. Journal of Korea Society of Digital Industry and Information Management, 16(3), 25-36. DOI : 10.17662/KSDIM.2020.16.3.025
  13. E. H. Kim,& Y. H. Suh. (2022). Research Topic Analysis of the Domestic Papers Related to COVID-19 Using LDA. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 15(5), 423-432. DOI : 10.17661/JKIIECT.2022.15.5.423
  14. C. Sievert, & K. Shirley. (2014). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces. 63-70.
  15. M. H. Bang, & Y. M. Lee (2022). Investigating the Trends of Research for the Small Business Owners. JOURNAL OF THE KOREA CONTENTS ASSOCIATION, 22(7), 73-80.
  16. Li, G., Dai, J. S., Park, E. M., & Park, S. T. (2017). A study on the service and trend of Fintech security based on text-mining: Focused on the data of Korean online news. Journal of Computer Virology and Hacking Techniques, 13(4), 249-255. https://doi.org/10.1007/s11416-016-0288-9
  17. Park, S. T., & Liu, C. (2020). A study on topic models using LDA and Word2Vec in travel route recommendation: focus on convergence travel and tours reviews. Personal and Ubiquitous Computing, 1-17.
  18. Park, S. T., Lee, S. W., & Kang, T. G. (2018). A study on the trend of cloud service and security through text mining technique. International Journal of Engineering & Technology, 7(2.33), 127-132.
  19. H. J. Lim, & S. B. Choi (2022). Analysis of the Effect of COVID19 on Changes in Sales in Commercial Districts of Seoul, Korea. Seoul Studies, 23(1), 47-65.