DOI QR코드

DOI QR Code

Pandanus amaryllifoius Roxb. Leaves Ethanol Extract Ameliorates Lipid and Proinflammatory Cytokines Profiles in a Rat Model of Dyslipidemia

  • Martohap Parotua Lumbanraja (Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung) ;
  • Kusnandar Anggadiredja (Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung) ;
  • Neng Fisheri Kurniati (Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung) ;
  • Hubbi Nashrullah Muhammad (Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung)
  • Received : 2023.11.16
  • Accepted : 2024.05.16
  • Published : 2024.06.30

Abstract

Objectives: Dyslipidemia has currently become a major health challenge that still opens for safer and more effective modes of treatment. The plant Pandanus amaryllifolius Roxb. (pandan) has been indicated to contain active ingredients that interfere with the pathological pathway of dyslipidemia. The aim of the study was to test the effects of pandan leaves ethanol extract on lipid and proinflammatory profiles in a rat dyslipidemic model. Methods: Dyslipidemia was induced by administration of high-fat feed for 8 weeks. Treatments (vehicle, the reference drug simvastatin at 1.8 mg/kg, and extract at 200, 300 or 600 mg/kg) were given for 4 weeks following the completion of induction. Results: Significant post-treatment decreases in total cholesterol, low density lipoprotein (LDL), and triglyceride levels in groups receiving all doses of extract and simvastatin were observed. Similar results were also found in regards to proinflammatory cytokines levels. Pandan extracts significantly lowered the concentrations of IL-6, TNF-α, and NFκB p65. Characterization of metabolite contents of the extract confirmed the presence of the previously suggested active alkaloids pandamarilactonine-A and B. Conclusion: Taken together, results of the present study implied the ameliorating effects of pandan leaves ethanol extract in dyslipidemic condition which is potential for opening an avenue in combating this essential component of metabolic disorder.

Keywords

Acknowledgement

The authors thank Universitas Pertahanan RI (Defense University of the Republic of Indonesia), Lembaga Farmasi Puskesad (Pharmacy Board, Indonesian Army's Health Institute), Lembaga Biovaksin Puskesad (Biovaccine Board, Indonesian Army's Health Institute).

References

  1. Kwon SH, Myong JP, Kim HA, Kim KY. Association between morbidity of non-communicable disease and employment status: a comparison between Korea and the United States. BMC Public Health. 2020;20(1):763.
  2. Cavalcanti AM, Kusma SZ, Chomatas ERDV, Ignacio SA, Mendes EV, Moyses ST, et al. Noncommunicable diseases and their common risk factors in Curitiba, Brazil: results of a cross-sectional, population-based study. Rev Panam Salud Publica. 2018;42:e57.
  3. Crovetto M, Sepulveda MJ. Relationship between dietary energy intake, nutritional status and cardiovascular risk in adults from the communes of Quellon and Chonchi, Chiloe, Chile. J Prev Med Hyg. 2022;63(3):E435-41.
  4. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689-700.
  5. Poropat Flerin T, Bozic Mijovski M, Jug B. Association between lipoprotein subfractions, hemostatic potentials, and coronary atherosclerosis. Dis Markers. 2022;2022:2993309.
  6. Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc). 2016;81(11):1358-70.
  7. Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med. 2018;18(1):92.
  8. Chiabchalard A, Nooron N. Antihyperglycemic effects of Pandanus amaryllifolius Roxb. leaf extract. Pharmacogn Mag. 2015;11(41):117-22.
  9. Laluces HM, Nakayama A, Nonato M, dela Cruz TE, Tan MA. Antimicrobial alkaloids from the leaves of Pandanus amaryllifolius. J Appl Pharm Sci. 2015;5(10):151-3.
  10. Ooi LS, Sun SS, Ooi VE. Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae). Int J Biochem Cell Biol. 2004;36(8):1440-6.
  11. Thanebal SA/PP, Vun-Sang S, Iqbal M. Hepatoprotective effects of Pandanus amaryllifolius against carbon tetrachloride (CCl4) induced toxicity: a biochemical and histopathological study. Arab J Chem. 2021;14(10):103390.
  12. Reshidan NH, Abd Muid S, Mamikutty N. The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructoseinduced metabolic syndrome rat model. BMC Complement Altern Med. 2019;19(1):232.
  13. Lumbanraja MP, Anggadiredja K, Muhammad HN, Kurniati NF. Alkaloids from Pandanus amaryllifolius Roxb leaf as promising candidates for antidyslipidemic agents: an in silico study. Pharmacogn J. 2023;15(1):106-11.
  14. Dewi RT, Primahana G, Septama AW, Angelina M, Meilawati L, Fajriah S, et al. Quality control standardization of Indonesian noni fruit (Morinda citrifolia) extract and evaluation of their angiotensin-converting enzyme inhibitory activity. Pharmacia. 2022;69(3):709-17.
  15. Takayama H, Ichikawa T, Kuwajima T, Kitajima M, Seki H, Aimi N, et al. Structure characterization, biomimetic total synthesis, and optical purity of two new pyrrolidine alkaloids, pandamarilactonine-A and -B, isolated from Pandanus amaryllifolius Roxb. J Am Chem Soc. 2000;122(36):8635-9.
  16. Sikaris KA. The clinical biochemistry of obesity. Clin Biochem Rev. 2004;25(3):165-81.
  17. Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15(4):798-808.
  18. Tsai YC, Yu ML, El-Shazly M, Beerhues L, Cheng YB, Chen LC, et al. Alkaloids from Pandanus amaryllifolius: isolation and their plausible biosynthetic formation. J Nat Prod. 2015;78(10):2346-54.
  19. Ghasemzadeh A, Jaafar HZ. Profiling of phenolic compounds and their antioxidant and anticancer activities in pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of Malaysia. BMC Complement Altern Med. 2013;13:341.
  20. Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract. 2012;6(3):201-7.
  21. Talirevic E, Jelena S. Quercetin in the treatment of dyslipidemia. Med Arh. 2012;66(2):87-8.
  22. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134 12 Suppl:3479S-3485S.
  23. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374.
  24. Desgagne-Penix I. Distribution of alkaloids in woody plants. Plant Sci Today. 2017;4(3):137-42.
  25. Larbat R, Le Bot J, Bourgaud F, Robin C, Adamowicz S. Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biol (Stuttg). 2012;14(5):760-9.
  26. Nantongo JS, Odoi JB, Abigaba G, Gwali S. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res Notes. 2018;11(1):125.
  27. Jing L, Ma H, Fan P, Gao R, Jia Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement Altern Med. 2015;15:287.
  28. Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA reductase inhibitory activity. Heliyon. 2019;5(4):e01485.
  29. Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, et al. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother. 2019;118:109338.
  30. Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J. 2005;386(Pt 3): 471-8.
  31. Kosowski M, Basiak M, Hachula M, Okopien B. Impact of alirocumab on release markers of atherosclerotic plaque vulnerability in patients with mixed hyperlipidemia and vulnerable atherosclerotic plaque. Medicina (Kaunas). 2022;58(7):969.
  32. Sawant DA, Tharakan B, Wilson RL, Stagg HW, Hunter FA, Childs EW. Regulation of tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra large. J Surg Res. 2013;184(1):628-37.
  33. Urschel K, Cicha I. TNF-α in the cardiovascular system: from physiology to therapy. Int J Interf Cytokine Mediat Res. 2015;7:9-25.
  34. Reiss AB, Siegart NM, De Leon J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin Lipidol. 2017;12(1):14-23.
  35. Jones SA, Novick D, Horiuchi S, Yamamoto N, Szalai AJ, Fuller GM. C-reactive protein: a physiological activator of interleukin 6 receptor shedding. J Exp Med. 1999;189(3):599-604.
  36. Carty CL, Heagerty P, Heckbert SR, Jarvik GP, Lange LA, Cushman M, et al. Interaction between fibrinogen and IL-6 genetic variants and associations with cardiovascular disease risk in the Cardiovascular Health Study. Ann Hum Genet. 2010;74(1):1-10.
  37. Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A. 2020;117(36):22351-6.
  38. Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, et al. IL (interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p. Arterioscler Thromb Vasc Biol. 2020;40(2):323-34.
  39. Giovinazzo G, Gerardi C, Uberti-Foppa C, Lopalco L. Can natural polyphenols help in reducing cytokine storm in COVID-19 patients? Molecules. 2020;25(24):5888.
  40. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;27(9):2901.