DOI QR코드

DOI QR Code

앵두 추출물의 세포 수준에서의 스트레스 호르몬 생성 억제를 통한 GABA 조절 및 Filaggrin 과 Claudin-1 의 활성 효과

Effect of GABA Regulation and Activities of Filaggrin and Claudin-1 through Inhibiting Stress Hormone Production by Prunus tomentosa Extract In Vitro

  • 최원영 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 박성민 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 김라혜 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 이형진 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 이정노 ((주)코씨드바이오팜 피부사랑임상연구센터) ;
  • 유화선 ((주)코씨드바이오팜 피부사랑임상연구센터)
  • Won Yeoung Choi (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Sung Min Park (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Ra Hye Kim (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Hyoung Jin Lee (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Jung No Lee (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation) ;
  • Hwa Sun Ryu (SkinSaRang Clinical R&D Center, CoSeedBioPharm Corporation)
  • 투고 : 2024.05.24
  • 심사 : 2024.06.27
  • 발행 : 2024.06.30

초록

본 연구에서는 천연물 6 종 앵두, 으름, 살구, 야콘, 금귤 및 핑거라임을 활용하여 스트레스 완화에 의한 수면 개선 및 피부장벽 개선 효과를 검증하였다. 실험 결과, 6 종의 천연물 중 앵두, 핑거라임, 으름 및 금귤이 유의적으로 스트레스 호르몬인 cortisol의 생성을 억제하였다. 또한, 수면 조절에 관여하는 GABA 생성 효소인 GAD67의 발현은 앵두 정제수 추출물 및 핑거라임 50% 에탄올 추출물에서 유의한 증가 효과를 보였으며 앵두 용매별 추출물은 총 폴리페놀의 함량이 가장 높게 확인되었다. 스크리닝 결과 활성이 가장 높은 앵두 추출물을 활용하여 후속 실험을 진행하였다. 앵두 용매별 추출물 중, 30% 에탄올 추출물이 가장 높은 DPPH radical 소거 활성을 보였으며, 정제수 추출물은 GABA 생성 및 피부 장벽 인자인 filaggrin과 claudin-1의 발현을 가장 높게 증가시켰다. HPLC 분석을 통해 앵두 추출물의 주성분으로 quercitrin이 확인되었고 추출 용매별 quercitrin 함량은 30% 에탄올 > 정제수 > 70% 에탄올 > 50% 에탄올의 추출 용매 순으로 높은 함량을 보였다. Quercitrin은 cortisol의 생성을 농도의존적으로 억제하였으며, cortisol에 의해 감소되었던 GAD67 발현 및 GABA 생성을 유의적으로 증가시켰다. 연구를 통해 앵두 추출물이 스트레스를 완화시켜 수면 개선 및 피부 장벽 강화에 도움을 주는 화장품 소재로서 활용이 가능함을 입증하였다.

In this study, six types of natural products, Prunus tomentosa (P. tomentosa), Akebia quinata (A. quinata), Prunus armeniaca (P. armeniaca), Smallanthus sonchifolius (S. sonchifolius), Citrus japonica (C. japonica), and Citrus australasica (C. australasica), were used to verify the effect of improving sleep and skin barriers by stress relief. As a result of the experiment, the production of cortisol, a stress hormone, was significantly inhibited by the P. tomentosa, C. australasica, A. quinata, and C. japonica among the six natural products. In addition, the expression of GAD67, a GABA-producing enzyme involved in sleep regulation, showed a significant increase in P. tomentosa purified water extract and C. australasica 50% ethanol extract, and the extract by each P. tomentosa solvent was found to have the highest total polyphenol content. Based on the results, the P. tomentosa extract with the highest activity was finally selected, and subsequent experiments were conducted. Among each P. tomentosa solvent extract, the DPPH radical scavenging activity was the highest in the 30% ethanol extract, and purified water extract increased GABA production and skin barrier factors filaggrin and claudin-1 expression the highest. HPLC analysis confirmed quercitrin as the main component of P. tomentosa extract, and quercitrin content by extraction solvent was high in the order of 30% ethanol > purified water > 70% ethanol > 50% ethanol. Quercitrin inhibited the production of cortisol in a concentration-dependent manner, significantly increasing GAD67 expression and GABA production, which had been reduced by cortisol. From the results of this study, it has been demonstrated that P. tomentosa can be used as a cosmetic material to help improve sleep and strengthen skin barriers by relieving stress.

키워드

과제정보

본 연구는 충북경제자유구역청 및 충북테크노파크의 충북형 산업혁신 뉴딜사업(충북혁신뉴딜을 위한 향기원료 개발 및 제품 사업화)의 연구비 지원을 받아 수행됨

참고문헌

  1. M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, Br. J. Dermatol., 157(5), 874 (2007).
  2. M. Joels and T. Z. Baram, The neuro-symphony of stress, Nat. Rev. Neurosci., 10(6), 459 (2009).
  3. A, Papadimitriou and K. N. Priftis, Regulation of the hypothalamic -pituitary-adrenal axis, Neuroimmunomodulation., 16(5), 265 (2009).
  4. C. C. Zouboulis, H. Seltmann, N. Hiroi, W. Chen, M. Young, M. Oeff, W. A. Scherbaum, C. E. Orfanos, S. M. McCann, and S. R. Bornstein, Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes, Proc. Natl. Acad. Sci., 99(10), 7148 (2002).
  5. I. Mody and J. Maguire, The reciprocal regulation of stress hormones and GABAA receptors, Front. Cell., Neurosci., 6, 4 (2012).
  6. J. W. Tomlinson and P. M. Stewart, Cortisol metabolism and the role of 11β-hydroxysteroid dehydrogenase, Best. Pract. Res. Clin. Endocrinol. Metab., 15(1), 61 (2001).
  7. S. L. Choe, D. Kim, E. J. Kim, J. S. Ahn, E. J. Choi, E. D. Son, and E. H. Choi, Psychological stress deteriorates skin barrier function by activating 11β-hydroxysteroid dehydrogenase 1 and the HPA axis, Sci. Rep., 8(1), 6334 (2018).
  8. S. Cohen, D. Janicki-Deverts, and G. E. Miller, Psychological stress and disease. JAMA, 298(14), 1685 (2007).
  9. L. C . Houtepen, R. R. Schur, J. P. Wijnen, V. O. Boer, M. P. M. Boks, R. S. Kahn, M. Joels, D. W. Klomp, and C. H. Vinkers, Acute stress effects on GABA and glutamate levels in the prefrontal cortex: A 7T 1H magnetic resonance spectroscopy study, Neuroimage. Clin., 14, 195 (2017).
  10. G. B. Acosta and M. C. Rubio, GABAA receptors mediate the changes produced by stress on GABA function and locomotor activity, Neurosci. Lett., 176(1), 29 (1994).
  11. C. Gottesmann, GABA mechanisms and sleep, Neuroscience., 111(2), 231 (2002).
  12. F. C. Steward, J. F. Thompson, and C. E. Dent, γ-Aminobutyric acid: a constituent of potato tubers?, Science 110, 439 (1949).
  13. E. Roberts and S. Frankel, γ-Aminobutyric acid in brain: its formation from glutamic acid, J. Biol. Chem., 187(1), 55 (1950).
  14. V. S. Narayan and P. M. Nair, Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants, Phytochemistry., 29(2), 367 (1990).
  15. R. D. Schwartz, The GABAA receptor-gated ion channel: biochemical and pharmacological studies of structure and function, Biochem. Pharmacol., 37(18), 3369 (1988).
  16. O. A. Petroff, Book review: GABA and glutamate in the human brain, Neuroscientist., 8(6), 562 (2002).
  17. J. E. Lee, S. Y. Jo, and M, C . Kook, Production of γ-aminobutyric acid and antioxidative effects by Levilactobacillus brevis, Resour. Sci. Res., 3(1), 16 (2021).
  18. K. J. Skilbeck, G. A. Johnston, and T. Hinton, Stress and GABAA receptors, J. Neurochemistry., 112(5), 1115 (2010).
  19. G. Bowers, W. E. Cullinan, and J. P. Herman, Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits, J. Neurosci., 18(15), 5938 (1998).
  20. O. Folin and W. Denis. On phosphotungstic-phosphomolybdic compounds as color reagents, J. Biol. Chem., 12(2), 239 (1912).
  21. T. G. Guilliams and L. Edwards, C hronic stress and the HPA axis, The standard., 9(2), 1 (2010).
  22. E. A. Lucassen and C. Giovanni, The hypothalamic-pituitary-adrenal axis, obesity, and chronic stress exposure: sleep and the HPA axis in obesity, Curr. Obes. Rep., 1, 208 (2012).
  23. S. J. Yoon, T. S. Kim, and J. H. C hae, Understanding stress by neuroscience, J. Korean. Acad. Fam. Med., 26(8), 439 (2005).
  24. A. Y. Kim and N. Kim, Associations of perceived stress level, serum cortisol level, and telomere length of community-dwelling adults in Korea, J. Korean Biol. Nurs. Sci., 24(4), 235 (2022).
  25. P. Mourrain and G. X. Wang, Sleep: DNA repair function for better neuronal aging?, Current Biology., 29(12), R585 (2019).
  26. N. R. Perron and J. L. Brumaghim, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding, Cell. Biochem. Biophys., 53, 75 (2009).
  27. Dragsted, Antioxidant actions of polyphenols in humans, Int. J. Vitam. N utr. Res., 73(2), 112 (2003).
  28. N. Balasundram, K. Sundram, and S. Samman, Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses, Food. Chem., 99(1), 191 (2006).
  29. M. R. Al-Sereiti, K. M. Abu-Amer, and P. Sena, Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials, Indian. J. Exp. Biol., 37, 124 (1999).
  30. P. Hepsomali, J. A. Groeger, J. Nishihira, and A. Scholey, Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review, Front. Neurosci., 14, 559962 (2020).
  31. F. Stahl and G. Dorner, Responses of salivary cortisol levels to stress-situations, Endokrinologie., 80(2), 158 (1982).
  32. J. A. Bouwstra and M. Ponec, The skin barrier in healthy and diseased state, Biochim. Biophys. Acta. Biomembr., 1758(12), 2080 (2006).
  33. J. H. C hoo, H. G. Lee, S. Y. Lee, and N. G. Kang, Iris pallida extract alleviates cortisol-induced decrease in type 1 collagen and hyaluronic acid syntheses in human skin cells, Curr. Issues. Mol. Biol., 45(1), 353 (2023).
  34. M. Maarouf, C. L. Maarouf, G. Yosipovitch, and V. Y. Shi, The impact of stress on epidermal barrier function: an evidence-based review, Br. J. Dermatol., 181(6), 1129 (2019).
  35. A. Sandilands, C. Sutherland, A. D. Irvine, and W. I. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell. Sci., 122(9), 1285 (2009). 
  36. H. Kim, J. U. Shin, and K. H. Lee, Atopic dermatitis and skin barrier dysfunction, Allergy Asthma Respir. Dis., 1(1), 20 (2013).
  37. H. N. Kim and M. Y. Yun, Effect on skin of immune functioning and claudin-1 by using Scutellaria baicalensis bio-conversion substance, J. Korean. Soc. Cosmetol., 22(6), 1160 (2016).
  38. H. S. Hwang, J. M. Kim, Y. J. Jeon, Y. A. Song, and H. S. Park, Flavoniods and antimicrobial activity of the ethanol extrat of Korean cherry (Prunus tomentosa Thunberg), J. Korean. Soc. Food Sci. Nutr., 32(6), 833 (2003).
  39. S. C. Chou, C. R. Su, Y. C. Ku, and T. S. Wu, The constituents and their bioactivities of Houttuynia cordata, Chem. Pharm. Bull., 57(11), 1227 (2009).
  40. M. Comalada, D. Camuesco, S. Sierra, I. Ballester, J. Xaus, J. Galvez, and A. Zarzuelo, In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF κB pathway, Eur. J. Immunol., 35(2), 584 (2005).
  41. A. Veckenstedt and R. Pusztai, Mechanism of antiviral action of quercetin against cardiovirus infection in mice, Antivir. Res., 1(4), 249 (1981).