KYUNGPOOK Math. J. 64(2024), 337-352 https://doi.org/10.5666/KMJ.2024.64.2.337 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Note on Theta Pairs for *BCI*-algebras

RASOUL SOLEIMANI

Department of Mathematics, Payame Noor University, Tehran, Iran e-mail: r_soleimani@pnu.ac.ir and rsoleimanii@yahoo.com

ABSTRACT. In this paper, first we show that all finite BCI-algebras are solvable. We then introduce the notion of a θ -pair for a maximal ideal of a BCI-algebra. Proving various properties of maximal θ -pairs, we use them to characterize solvable and nilpotent BCIalgebras.

1. Introduction

The concepts of BCK-algebras, and the more general BCI-algebras, were introduced by Y. Imai and K. Iséki [5, 6] in 1966. Since this time, various authors have studied and developed many concepts related to these algebraic structures; see for example [2, 8, 10, 11, 12]. In [4], Huang used the notion of nilpotency in ring theory to introduce the notion of nilpotency in BCI-algebras. See also [8], where this and a new definition of commutators and solvability in a BCI-algebra was given, and then used to prove that every finite nilpotent BCI-algebra is solvable. In this paper, we first improve this result (see [8, Theorem 6.3]) and show that every finite BCI-algebra is solvable. Also we introduce the notion of θ -pair for a maximal ideal of a BCI-algebra. This is similar to the concept of θ -pair for any maximal subgroup of a group as introduced by Mukherjee and Bhattacharya [9], and Beidleman and Smith [1]. This concept has since been further studied by a number of authors, including Guo [3] and Li [7]. We also look at other useful properties of solvable and nilpotent BCI-algebras.

Received September 12, 2023; accepted December 7, 2023.

 $^{2020 \ {\}rm Mathematics \ Subject \ Classification: \ Primary \ 06F35; \ Secondary \ 20F16, \ 20F18.}$

Key words and phrases: BCI -algebra, nilpotent BCI -algebra, solvable BCI -algebra, θ -pair.

2. Preliminaries and Basic Results

In this section we give some basic results which will be used in the rest of the paper.

A *BCI*-algebra is an algebra (X, *, 0) of type (2, 0), if for any $x, y, z \in X$, it sat isfies the following axioms:

(BCI1) ((x * y) * (x * z)) * (z * y) = 0,(BCI2) (x * (x * y)) * y = 0,(BCI3) x * x = 0,(BCI4) x * y = y * x = 0 implies x = y. [5, 6]

In any *BCI*-algebra X, one can define a partial order by putting $x \leq y$ if and only if x * y = 0.

Theorem 2.1.([13]) In any *BCI*-algebra X the following properties are satisfied for any $x, y, z \in X$:

 $(BCI5) \ x * 0 = x.$ $(BCI6) \ (x * y) * z = (x * z) * y.$ $(BCI7) \ x \le y \text{ implies } x * z \le y * z \text{ and } z * y \le z * x.$ $(BCI8) \ (x * z) * (y * z) \le x * y.$ $(BCI9) \ x * (x * (x * y)) = x * y.$ $(BCI10) \ 0 * (x * y) = (0 * x) * (0 * y).$

Theorem 2.2.([13]) Let X be a nonempty set. Then X is a *BCI*-algebra if and only if there is a partial ordering \leq on X such that for any $x, y, z \in X$, the following conditions hold:

- (i) $(x * y) * (x * z) \le (z * y)$,
- (ii) $x * (x * y) \le y$,
- (iii) x * y = 0 if and only if $x \le y$.

A nonempty subset S of a BCI-algebra X is said a subalgebra of X if $x * y \in S$ for any $x, y \in S$. Also a nonempty subset I of a BCI-algebra X is said an ideal of X if $0 \in I$ and if $x * y \in I, y \in I$, imply $x \in I$. Obviously, X and $\{0\}$ (we write 0 is an ideal of X, for convenience) are ideals of X, which called the trivial ideals of X. An ideal I is called proper, if $I \neq X$ and is called closed, if it is also a subalgebra of X.

A BCI-algebra X is called commutative if $x \leq y$ implies $x \wedge y = x$, where $x \wedge y = y * (y * x)$, for all $x, y \in X$. An ideal I of a BCI-algebra X is called commutative if $x * y \in I$ implies $x * ((y * (y * x)) * (0 * (y * x))) \in I$ for all $x, y \in X$.

In a BCI-algebra X we denote by BCK(X) the BCK-part of X and set

$$BCK(X) = \{ x \in X : 0 * x = 0 \}.$$

If X = BCK(X), then X is called a *BCK*-algebra. One can easily check that the *BCK*-part of X is a closed ideal of X. A *BCI*-algebra X is said to be *p*-semisimple

338

if 0 * (0 * x) = x, for all $x \in X$. The set $\{x \in X : 0 * (0 * x) = x\}$ is called the center of X and is denoted by C(X) (see [12]).

Let $S \subseteq X$ be a non-empty set. The least ideal of X containing S is said the generated ideal of X by S and is denoted by $\langle S \rangle$. A proper ideal M of X is called a maximal ideal if $\langle M \cup \{x\} \rangle = X$, for any $x \in X \setminus M$. We note that M is a maximal ideal of X if and only if $M \subseteq I \subseteq X$ implies that M = I or I = X, for any ideal I of X. We call a maximal ideal of X that is closed, as a closed maximal ideal of X. If A and B are two ideals of X, then the symbol A + B will be used for $\langle A \cup B \rangle$. Moreover, If A and B are closed, then A + B is a closed ideal of X (see [13], Proposition 1.4.15).

Let I be an ideal of a *BCI*-algebra X and $x, y \in X$. Following [8], we call the element

$$[x, y] = ((x \land y) \ast (y \land x)) \ast ((0 \ast (y \ast x))),$$

is the commutator of x_1 and x_2 of weight 2.

In general, the element $[x_1, x_2, ..., x_n] = [[x_1, ..., x_{n-1}], x_n]$ is a commutator of weight $n \ge 2$, where $[x_1] = x_1$.

Let I be an ideal of a *BCI*-algebra X. Then the relation ~ defined by $x \sim y$ if and only if $x * y, y * x \in I$ is a congruence relation on X. Let I_x denote the class of $x \in X$ and X/I denote the set of all classes I_x , where $x \in X$. Then $(X/I, *, I_0)$ is a *BCI*-algebra, where $I_x * I_y = I_{x*y}$ and $I_x = I_y$ if and only if $x \leq y$. The *BCI*algebra X/I is called the quotient *BCI*-algebra of X determined by I. Obviously, for any $x \in I$, $I_x = I$ if I is a closed ideal of X. Throughout the paper, X means a *BCI*-algebra (X, *, 0).

Lemma 2.3.([8]) For any $x, y \in X$, the following hold:

- (i) $[x, y] * x \le (0 * x),$
- (ii) 0 * [x, y] = 0,
- (iii) [0 * x, y] = 0.

Theorem 2.4.([13]) An ideal I of a *BCI*-algebra X is closed if and only if $0 * x \in I$, for any $x \in I$. Moreover, if X is of finite order, then any ideal of X is closed.

Theorem 2.5.([13]) Let S be a nonempty subset of a BCI-algebra X and let $A = \{x \in X : (\cdots ((x * a_1) * a_2) * \cdots) * a_n = 0; for some a_1, a_2, ..., a_n \in S\}$. Then $\langle S \rangle = A \cup \{0\}$. Moreover, if I is an ideal of X, then

$$\langle A \cup S \rangle = \{ x \in X : (\dots ((x * a_1) * a_2) * \dots) * a_n \in A; for some a_1, \dots, a_n \in S \}.$$

Theorem 2.6.([13]) A closed ideal I of a *BCI*-algebra X is commutative if and only if the quotient algebra X/I is a commutative *BCI*-algebra.

Definition 2.7.([8]) Let $X_1, X_2, ..., X_n$ be a non-empty subsets of X. A commutator of X_1 and X_2 is defined as $[X_1, X_2] = \langle \{ [x_1, x_2] : x_1 \in X_1, x_2 \in X_2 \} \rangle$. Moreover,

for $n \geq 2$, $[X_1, ..., X_n] = [[X_1, ..., X_{n-1}], X_n]$. Hence $[X, X] = \langle \{[x, y] : x, y \in X\} \rangle$ and is called the derived ideal of X, which is denoted by $X' = X^{(1)}$.

Theorem 2.8.([8]) Let I be an ideal of X. Then X/I is commutative if and only if $X^{(1)} \subseteq I$.

By Lemma 2.3(ii), for any $[x, y] \in X^{(1)}$, $0 * [x, y] = 0 \in X^{(1)}$, which implies that $X^{(1)}$ is a closed ideal of X.

Corollary 2.9. Let X be a *BCI*-algebra. Then X is commutative if and only if $X^{(1)} = 0$.

By using Theorems 2.6 and 2.8, we conclude the following result.

Corollary 2.10. Let *I* be a closed ideal of *BCI*-algebra *X*. Then *I* is commutative if and only if $[x, y] \in I$, for all $x, y \in X$.

Lemma 2.11. Let X be a *BCI*-algebra and I be an ideal of X. Then for any $x, y \in X$, $[I_x, I_y] = I_{[x,y]}$.

Proof. Let $x, y \in X$. Then

$$\begin{split} [I_x, I_y] &= \left((I_y * (I_y * I_x)) * (I_x * (I_x * I_y)) \right) * (I_0 * (I_y * I_x)) \\ &= \left(I_{(y*(y*x))} * I_{(x*(x*y))} \right) * I_{(0*(y*x))} \\ &= I_{((y*(y*x))*(x*(x*y)))*(0*(y*x))} = I_{[x,y]}. \end{split}$$

Theorem 2.12.([13]) If I is a commutative ideal of a *BCI*-algebra X, then every closed ideal A of X with $I \subseteq A$, is commutative.

Definition 2.13. Let I be a subalgebra of a BCI-algebra X. The set

$$R_X(I) = \{ x \in X : [x, a] \in I, for any \ a \in I \},\$$

is called the normalizer of I in X. Since I is a subalgebra of X, it follows that $I \subseteq R_X(I)$. Obviously, if X is commutative, then $R_X(I) = X$.

Lemma 2.14. Let X be a *BCI*-algebra and I be a subalgebra of X. Then $C(X) \subseteq R_X(I)$.

Proof. Suppose that $x \in C(X)$. Then 0 * (0 * x) = x. Now for any $y \in X$,

$$\begin{split} [x,y] &= ((y*(y*x))*(x*(x*y)))*(0*(y*x)) \\ &\leq (x*(x*(x*y)))*(0*(y*x)) \quad by \ (BCI7) \ and \ Theorem \ 2.2(ii) \end{split}$$

$$= (x * y) * (0 * (y * x))$$
by (BCI9) $= (x * y) * ((0 * y) * (0 * x))$ by (BCI10) $= (x * y) * ((0 * (0 * x)) * y)$ by (BCI6) $= (x * y) * (x * y) = 0$ by assumption and (BCI3)

Hence for all $y \in X$, $[x, y] = 0 \in I$ and so $C(X) \subseteq R_X(I)$, as required. \Box

Corollary 2.15. Let X be a p-semisimple BCI-algebra and I be a subalgebra of X. Then $R_X(I) = X$.

Proof. Since X is p-semisimple, C(X) = X. Now the result holds by Lemma 2.14.

Example 2.16. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a *BCI*-algebra with the Cayley table as follows:

*	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	1	5
2	2	2	0	2	0	5
3	3	3	3	0	0	5
4	4	3	4	1	0	5
5	5	5	5	5	5	0

By simple calculations we obtain $I = \{0, 2, 4\}$ is a subalgebra of X such that $1 \notin R_X(I)$, because [1, 4] = 1, and $R_X(I) = \{0, 2, 3, 4, 5\}$.

Lemma 2.17. Suppose that A is a subalgebra and B is a closed ideal of a BCIalgebra X. Then $[A, B] \subseteq B$ if and only if $A \subseteq R_X(B)$.

Proof. Let $a \in A$. Then for any $b \in B$, $[a, b] \in [A, B] \subseteq B$. Hence $[a, b] \in B$ and so $A \subseteq R_X(B)$.

Conversely, if $A \subseteq R_X(B)$, then for any $a \in A, b \in B$, $[a, b] \in B$. Now let $u \in [A, B] = \langle [a, b] : a \in A, b \in B \rangle$. By Theorem 2.5, we get

$$(\cdots ((u \ast x_1) \ast x_2) \ast \cdots) \ast x_n = 0 \in B,$$

for some $n \in \mathbb{N}$, where $x_i = [a_i, b_i], a_i \in A, b_i \in B$ and i = 1, ..., n. Since B is an ideal of X, it follows that $u \in B$, which shows that $[A, B] \subseteq B$, as required. \Box

Lemma 2.18. Let I be a subalgebra of a BCI-algebra X. Then $N_X(I) = \langle R_X(I) \rangle = \bigcap_{R_X(I) \subseteq J} J$ where J is any ideal of X such that $R_X(I) \subseteq J$, is the closed ideal of X contains I. Moreover, if I is a commutative closed ideal of X, then $N_X(I)$ is the largest commutative closed ideal of X containing I.

Proof. First by Lemma 2.3(iii), for any $x \in N_X(I)$ and $a \in I, [0 * x, a] = 0 \in I$ and thus $0 * x \in R_X(I)$, which shows that $N_X(I)$ is the closed ideal of X. Also if I is a commutative closed ideal of X, then by Theorem 2.12, $N_X(I)$ is commutative. Next, let K be a commutative closed ideal of X such that $I \subseteq K$. By Corollary 2.10, for all $k \in K$ and $a \in I, [k, a] \in I$ and so $K \subseteq R_X(I) \subseteq N_X(I)$, which shows that $N_X(I)$ is the largest commutative closed ideal of X containing I, as required. \Box

We observe that if I is a closed ideal of a BCI-algebra X, then $C_X(I) \subseteq N_X(I)$, where $C_X(I) = \langle \{x \in X : [x, a] = 0, [a, x] = 0, \forall a \in I \} \rangle$ is said the centralizer of I in X (see [8]).

Definition 2.19. For an ideal U of X, let U_X , the core (with respect to X) of U, be the largest closed ideal of X contained in U. Obviously if U is a closed ideal of X, then $U_X = U$.

Corollary 2.20. If X is a finite *BCI*-algebra and I is an ideal of X, then $I_X = I$.

Proof. Since by Theorem 2.4, all ideals of X are closed, we deduced that $I_X = I$, for any ideal I of X.

Theorem 2.21.([13]) Suppose that A and B are ideals of a BCI-algebra X and let $AB = \bigcup_{a \in A} B_a$, where B_a is an equivalence class in X/B. If B is closed, then AB = A + B, where $A + B = \langle A \cup B \rangle$.

Theorem 2.22.([13]) If *H* is a subalgebra of *X* and *K* is a closed ideal of *X*, then $HK/K \cong H/(H \cap K)$.

3. Nilpotent and Solvable BCI-algebras

In this section, we provide some results concerning nilpotent and solvable BCIalgebras. In [8], Mohammadzadeh and Borzooei introduced the concept of nilpotent BCI-algebra, according to nilpotency in group theory, as follows:

Definition 3.1.([8]) Let $Z_0(X) = 0$, $Z_n(X) = \langle \{x : [x, y_1, ..., y_n] = 0, \text{ for any } y_1, ..., y_n \in X \} \rangle$ for any $n \ge 1$. By Lemma 2.3(iii), $Z_n(X)$ is a closed ideal of X. The sequence of ideals

$$0 = Z_0(X) \subseteq Z_1(X) \subseteq \dots \subseteq Z_n(X),$$

is called the upper central series of X. Its *i*-th term $Z_i(X)$ is called the *i*-th center of X. Now, X is called nilpotent, if there exists $n \in \mathbb{N}$ such that $Z_n(X) = X$. The

smallest such integer is called the class of X. We note that $Z_1(X) = Z(X) = \langle \{x : [x, y] = 0, \text{ for any } y \in X \} \rangle$.

Example 3.2. Let – be the subtraction of integers. Then $X = (\mathbb{Z}, -, 0)$ is a *p*-semisimple *BCI*-algebra and so C(X) = X (see [13], Example 5.3.2). It follows that [x, y] = 0 for all $x, y \in X$, by the proof of Lemma 2.14 and hence $Z_1(X) = X$, which shows that X is nilpotent of class at most 1.

Lemma 3.3.([8]) Let i > 0. Then $[Z_i(X), X] \subseteq Z_{i-1}(X)$.

Theorem 3.4.([8]) Let X be a *BCI*-nilpotent algebra and I be a nontrivial proper closed ideal of X. Then $I \neq N_X(I)$.

Proof. Assume that X is nilpotent of class r with the upper central series:

$$0 = Z_0(X) \subseteq Z_1(X) \subseteq \dots \subseteq Z_r(X) = X.$$

Let $A = \{m : Z_m(X) \nsubseteq I, 1 \le m \le r\}$. It is obvious that $r \in A$. Let $k = \min A$. Hence $Z_k(X) \nsubseteq I$ and $Z_{k-1}(X) \subseteq I$. Now, we observe that by Lemma 3.3,

$$[Z_k(X), I] \subseteq [Z_k(X), X] \subseteq Z_{k-1}(X) \subseteq I.$$

Hence by Lemma 2.17, $Z_k(X) \subseteq R_X(I)$, it follows that $I \subset R_X(I) \subseteq N_X(I)$ and the result holds.

The following immediate corollary of the above theorem is straightforward.

Corollary 3.5. If X is a *BCI*-nilpotent algebra and M is a closed maximal ideal of X, then $N_X(M) = X$.

Theorem 3.6.([8]) A *BCI*-algebra X is commutative if and only if it is nilpotent of class at most 1.

Corollary 3.7. For any BCI-algebra X, the following properties are equivalent:

- (i) X is nilpotent of class at most 1,
- (ii) the zero ideal $\{0\}$ is commutative,
- (iii) every closed ideal of X is commutative.

Proof. The proof is trivial from Theorem 2.5.19 and Corollary 2.5.20 of [13], and Theorem 3.6. \Box

Lemma 3.8.([8]) If X is nilpotent *BCI*-algebra, then any subalgebra of X is nilpotent. Also if I is a *BCI*-ideal of X, then X/I is nilpotent.

Theorem 3.9.([8]) Let I be an ideal of BCI-algebra X and $n, m \in \mathbb{N}$. If I is a nilpotent BCI-ideal of class m and X/I is nilpotent of class n, then X is nilpotent of class n + m.

Theorem 3.10.([8]) Let X be a nilpotent *BCI*-algebra of class $n \ge 1$ and N be a nontrivial closed ideal of X. Then $N \cap Z(X) \ne 0$.

Corrollary 3.11.([8]) Let X be a nilpotent *BCI*-algebra of class $n \ge 1$. If N is a minimal (closed) ideal of X, then $N \subseteq Z(X)$.

The following concept was introduced by Mohammadzadeh and Borzooei [8], by applying a new definition of derived ideal (Definition 2.7).

Definition 3.12. Let X be a *BCI*-algebra, $X^{(1)} = [X, X]$ and for any $n \in \mathbb{N}, X^{(n)} = [X^{(n-1)}, X^{(n-1)}]$. Then X is called solvable if there exists $n \in \mathbb{N}$ such that $X^{(n)} = 0$. The smallest such n is called derived length of X. Clearly by Lemma 2.3(iii), $X^{(n)}$ for any $n \in \mathbb{N}$ is a closed ideal of X.

Lemma 3.13.([8]) If X is a solvable BCI-algebra, then any subalgebra of X is solvable. Also if I is a BCI-ideal of X, then X/I is solvable.

Theorem 3.14.([8]) Let I be an ideal of X. If I and X/I are solvable BCI-algebras, then X is a solvable BCI-algebra.

Theorem 3.15.([8]) Let X be a finite *BCI*-algebra and $[x, y] \le x$, for any $x, y \in X$. Then X is solvable.

In the following theorem, we give a necessary and sufficient condition on a BCI-algebra X, such that X to be solvable.

Theorem 3.16. The *BCI*-algebra X is solvable if and only if there exists a chain of closed ideals $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_k = 0$ such that each quotient $X_l/X_{l+1}, 0 \le l \le k-1$ is commutative.

Proof. Since X is solvable, there exists $i \in \mathbb{N}$ such that $X^{(i)} = 0$. Then we have a sequence of closed ideals:

$$X \supseteq X^{(1)} \supseteq X^{(2)} \supseteq \cdots \supseteq X^{(i)} = 0.$$

We show that each quotient $X^{(l)}/X^{(l+1)}$ $(1 \leq l \leq i-1)$, is commutative. Let $a, b \in X^{(l)}$. Since $X^{(l+1)} = [X^{(l)}, X^{(l)}]$, it follows that $[a, b] \in X^{(l+1)}$ and then by Lemma 2.11,

$$[X_a^{(l+1)}, X_b^{(l+1)}] = X_{[a,b]}^{(l+1)} = X^{(l+1)} = X_0^{(l+1)}.$$

Therefore $X^{(l)}/X^{(l+1)}$ is commutative, by Corollary 2.9.

Conversely, let $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_k = 0$ be the closed ideals of X such that each quotient X_l/X_{l+1} , $0 \le l \le k-1$ is commutative. Therefore X_k

and X_{k-1}/X_k are solvable, which show that X_{k-1} is solvable by Theorem 3.14. Similarly, X_{k-2}/X_{k-1} is solvable, and thus X_{k-2} is solvable. Continuing this way, X_1 is solvable. Next, since X/X_1 is commutative, it follows that $X_0 = X$ is solvable, as desired.

By using the concept of solvable $BCI\-$ algebras, we have the following main theorem.

Theorem 3.17. Let X be a finite BCI-algebra. Then X is solvable.

Proof. Suppose that X is a finite BCI-algebra and B = BCK(X) is the BCK-part of X. Since by Lemma 2.3(ii), 0 * [x, y] = 0 for all $x, y \in X$, it follows that $X^{(1)} \subseteq B$. We observe that if $|B| \le 2$, then $X^{(1)} = 0$ and so by Corollary 2.9, X is commutative, which shows that X is solvable. Next, we assume that |B| > 2. Then by Lemma 2.3(i), $[x, y] * x \le 0 * x = 0$ for all $x, y \in B$. Thus [x, y] * x = 0 and so $[x, y] \le x$. Hence by Theorem 3.15, B is solvable. Now X/B is solvable, since X/B is commutative by Theorem 2.8 which, together with Theorem 3.14, implies that X is solvable.

Remark 3.18. Note that, the above theorem was proved in [8, Theorem 6.3] with extra condition that G must be a nilpotent BCI-algebra.

As an application of Theorem 3.17, we give the following main result.

Corollary 3.19. A finite BCI-algebra is nilpotent.

Proof. Assume that X is a finite *BCI*-algebra. By Theorem 3.17, X is solvable. Suppose on the contrary, that X is non-nilpotent of the smallest order. If $X^{(1)} = 0$ then X is commutative by Corollary 2.9 and so X is nilpotent, which is impossible. Moreover, if $X^{(1)} = X$, then $X = X^{(i)}$ for any $i \in \mathbb{N}$, which shows that X is non-solvable, a contradiction. Now $X/X^{(1)}$ and $X^{(1)}$ are nilpotent and so by Theorem 3.9, X is nilpotent, again a contradiction. \square

4. θ -pairs in *BCI*-algebras

In this section, we determine the concept of θ -pair for a maximal ideal in a *BCI*-algebra. Moreover, we obtain some results on the maximal θ -pairs when the *BCI*-algebra is solvable or nilpotent. For convenience, we denote M < X to indicate that M is a maximal ideal of a *BCI*-algebra X. The following definition is essential in our investigation.

Definition 4.1. Let M be a maximal ideal of BCI-algebra X. A pair (C, D) of subalgebras of X is said to be a θ -pair for M if it satisfies the following conditions:

(a) D is a closed ideal of X, contained in C;

- (b) $D \subseteq M$ and $C \not\subseteq M$;
- (c) C/D includes properly no nonzero closed ideal of X/D.

Furthermore, if C is an (a closed) ideal of X, then the pair (C, D) is called an (a closed) ideal θ -pair for M. This concept will be use to investigate the influence of the maximal ideals on the structure of certain BCI-algebras.

If M is a maximal ideal of X, then we denote by $\theta(M)$, the set of all θ -pairs of M, and define a partial order on it by means of $(C_1, D_1) \leq (C_2, D_2)$ if and only if C_1 is a subalgebra of C_2 , whence $\theta(M)$ will contain maximal elements with respect to this ordering, which called maximal θ -pairs. We denote the set of all maximal θ -pairs for M, by $\theta_{max}(M)$. Also we call a closed ideal θ -pair $(A, B) \in \theta(M)$ is maximal closed ideal θ -pair, if there is no closed ideal θ -pair $(C, D) \in \theta(M)$ such that A is a proper subalgebra of C.

This is similar to the concept of θ -pair for any maximal subgroup of a finite group as suggested by Mukherjee and Bhattacharya [9], which has since been further investigated by a number of authors (see [3, 7]). Also Beidleman and Smith applied this concept for infinite group (see [1]).

Example 4.2. Let $X = \{0, a, b, c, d\}$ and the binary operation * be defined as follows:

*	0	a	b	С	d
0	0	0	0	0	0
a	a	0	0	a	0
b	b	a	0	b	a
c	c	c	c	0	c
d	d	d	d	d	0

Then X is a *BCI*-algebra. Let $M = \{0, a, b, c\}$, $A = \{0, c, d\}$ and $B = \{0, c\}$. Hence M is a closed maximal ideal of X, A is a subalgebra of X which is not an ideal, $B \subset M = M_X$ and $(A, B) \in \theta(M)$.

Example 4.3. Let $X = \{0, 1, a, b, c\}$ and define the binary operation * on X by the following table:

*	0	1	a	b	c
0	0	0	a	b	c
1	1	0	a	b	c
a	a	a	0	c	b
b	b	b	c	0	a
c	c	c	b	a	0

Then (X, *, 0) is a *BCI*-algebra. Let $M = \{0, 1, a\}, C = \{0, 1, b\}$ and $D = \{0, 1\}$. Then $M \leq X$ and (C, D) is a closed maximal ideal θ -pair for M.

Example 4.4. For a *BCI*-algebra $X = (\mathbb{Z}, -, 0)$, where - be the subtraction of integers, we define two closed maximal ideals of X, as $M_1 = \{2n : n \in \mathbb{Z}\}$ and $M_2 = \{3n : n \in \mathbb{Z}\}$. We conclude that $(X, M_1) \in \theta_{max}(M_1)$ and $(X, M_2) \in \theta_{max}(M_2)$.

Lemma 4.5. Let M be a maximal ideal of a *BCI*-algebra X and $(C, D) \in \theta(M)$. Then $D \subset M_X$.

Proof. Since D is a closed ideal of X such that $D \subset M$, it follows that $D \subset M_X$. \Box

The following theorem is a useful fact in proving our next results.

Theorem 4.6. Let X be a *BCI*-algebra, M be a maximal ideal of X and (C, D) be an ideal θ -pair for M. Then

- (i) $D = (C \cap M)_X$.
- (ii) $D = C \cap M_X$ if (C, D) is a closed ideal θ -pair for M; otherwise $D = C_X$.

Proof. (i) Obviously, $D \subseteq (C \cap M)_X$. For the converse, assume by way of contradiction that $(C \cap M)_X \notin D$. Then $D + (C \cap M)_X$ is a closed ideal of X containing properly D and contained in C. It follows that $C = D + (C \cap M)_X$, because $(C, D) \in \theta(M)$. Hence $X = \langle C, M \rangle = M + D + (C \cap M)_X = M$, which is a contradiction.

(ii) First suppose that C is a closed ideal of X. Then $C \cap M_X \subseteq (C \cap M)_X$ and so by (i), $C \cap M_X \subseteq D$, whence $D = C \cap M_X$. Next, assume that C is not closed ideal of X. Then C_X is a closed ideal of X containing D. Since C_X is a proper ideal of C, it follows that $D = C_X$ by the definition of θ -pair.

Corollary 4.7. If $(A, B), (C, D) \in \theta(M)$ and $(A, B) \leq (C, D)$, then $B \subseteq D$.

Proof. Since $A \subseteq C$, it follows that $B = (A \cap M)_X \subseteq (C \cap M)_X = D$, by Theorem 4.6.

Lemma 4.8. Let X be a *BCI*-algebra, $M \leq X$ and I be an ideal of X such that $I \subseteq M$.

- (i) If (A, B) is a (an ideal) θ -pair for M and $I \subseteq B$, then (A/I, B/I) is a (an ideal) θ -pair for M/I. Conversely, if (A/I, B/I) is a (an ideal) θ -pair for M/I, then (A, B) is a (an ideal) θ -pair for M. In particular, (A, B) is a maximal member in $\theta(M)$ if and only if (A/I, B/I) is a maximal member in $\theta(M/I)$.
- (ii) If (A, B) is a closed ideal θ -pair of M, then $\theta(M)$ contains a maximal closed ideal θ -pair (C, D) such that $(A, B) \leq (C, D)$ and $A/B \cong C/D$.

Proof. (i) This is trivial from the definition of θ -pair.

(ii) If (A, B) is not a maximal member in θ(M), then (A, B) ≤ (A₁, B₁), where (A₁, B₁) ∈ θ(M). If B = B₁, then B₁ = B ⊂ A ⊆ A₁, and so A₁/B₁ includes properly nonzero closed ideal A/B₁ of X/B₁, contracting the fact that (A₁, B₁) ∈ θ(M), whence by Corollary 4.7, B is a proper subalgebra of B₁. Also A ∩ B₁ = B; otherwise we will have B ⊂ A ∩ B₁ ⊂ A, which is impossible by definition of θ-pair. It is readily verified that A + B₁ = A₁. Next, we prove that A₁ is a closed ideal of X. Let y * x, x ∈ A₁. Since A₁ = B₁ + A, then by Theorem 2.5, and (BCI6) we get

$$(\cdots ((y * x) * a_1) * \cdots) * a_n = (\cdots ((y * a_1) * a_2) * \cdots * a_n) * x \in B_1,$$

for some $n \in \mathbb{N}$ and $a_1, ..., a_n \in A$. Since $A \subseteq A_1$, it follows that $y \in A_1 + B_1 = A + B_1 = A + B_1 = A_1$, as required. Also since A is a closed ideal of X, then as $A + B_1 = A_1$, we deduced that A_1 is closed. Now by Theorems 2.21 and 2.22

$$A_1/B_1 = (A + B_1)/B_1 = AB_1/B_1 \cong A/A \cap B_1 \cong A/B.$$

Finally, if (A_1, B_1) is not maximal in $\theta(M)$, we may replace (A, B) by (A_1, B_1) in the above and derive a same conclusion.

Lemma 4.9. There exists a closed ideal θ -pair in $\theta(M)$ for every maximal ideal M of X.

Proof. Suppose that C is a closed ideal of X such that $C \not\subseteq M$ and D denotes the sum of all closed ideals I in X such that $I \subseteq M \cap C$. We say that if C/D has no contains any nonzero closed ideal of X/D, then (C, D) is a closed ideal θ -pair; otherwise, assume that E/D is a minimal closed ideal of X/D which is contained in C/D. Now, it is easy to see that (E, D) is a closed ideal θ -pair for M. \Box

Theorem 4.10. Let X be a *BCI*-algebra, M be a maximal ideal of X and (C, D) be a maximal closed ideal θ -pair for M. Then $D = M_X$.

Proof. It is sufficient to show that if I is a closed ideal of X contained in M, then $I \subseteq D$. Suppose on the contrary that $I \nsubseteq D$. We note that if $I \subseteq C$, it follows that D+I=C, because $(C,D) \in \theta(M)$ and then X = M+C = M+D+I = M, which is impossible. Hence $I \nsubseteq C$ and C is a proper ideal of C+I. Next, we claim that $(C+I, D+I) \in \theta(M)$. It is easy to see that the pair (C+I, D+I) satisfies both conditions (a) and (b) in the definition of θ -pair. Now, let A be a closed ideal of X such that $D+I \subseteq A \subseteq C+I$. Then $(C \cap A)/D$ is a closed ideal of X/D contained in C/D. Hence either $C \cap A = D$ or $C \cap A = C$. To continue the proof, we consider two cases:

348

Case I. $C \cap A = D$. In this case we show that D + I = A. Let $a \in A \subseteq I + C$. Since I and C are ideals of X, then by Theorem 2.5, we get $(\cdots ((a * x_1) * x_2) \cdots) * x_n \in I$, for some $n \in \mathbb{N}$ and $x_1, x_2, \dots, x_n \in C$. It follows that there exists $i \in I$ such that $(\cdots ((a * x_1) * x_2) \cdots) * x_n = i$. Hence by (BCI3), and (BCI6), we get

$$((\cdots ((a * i) * x_2) \cdots) * x_n) * x_1 = ((\cdots ((a * x_1) * x_2) \cdots) * x_n) * i = i * i = 0.$$

Since C is an ideal of X and $x_1, ..., x_n \in C$, then $a * i \in C$. Moreover $a * i \in A$ and thus $a * i \in A \cap C = D$. Therefore $a \in D + I$ and hence $A \subseteq D + I$. Therefore A = D + I.

Case II. $C \cap A = C$. Then $C \subseteq A$ and so $I + C \subseteq A$, because $I \subseteq A$. Hence A = C + I.

Therefore $(C + I, D + I) \in \theta(M)$, which contradicts the maximality of (C, D) in $\theta(M)$.

Corollary 4.11. Let M be a closed maximal ideal of a *BCI*-algebra X. Then $\theta_{max}(M) = \{(X, M)\}.$

Proof. Since M is a closed ideal of X, $(X, M) \in \theta(M)$. Furthermore, if (A, B) is another maximal θ -pair for M in X, then A = X and so (X, B) is a maximal closed ideal θ -pair for M in X. Hence by Theorem 4.10 and assumption, $B = M_X = M$ and so $\theta_{max}(M) = \{(X, M)\}$, as required.

Lemma 4.12. Let X be a *BCI*-algebra, M < X and I be an ideal of X such that $I \subseteq M$. Then $|\theta_{max}(M/I)| \leq |\theta_{max}(M)|$.

Proof. By Lemma 4.8, the map

$$au: heta_{max}(M/I) \to heta_{max}(M)$$

 $(C/I, D/I) \mapsto (C, D)$

is well-defined. Now, it is easy to see that the map τ is one-to-one.

As an application of Lemma 4.12, we get the following corollary.

Corollary 4.13. Let M be a closed maximal ideal of a *BCI*-algebra X and I be an ideal of X such that $I \subseteq M$. Then $|\theta_{max}(M/I)| = 1$.

Proof. It is sufficient to observe that $|\theta_{max}(M/I)| \leq |\theta_{max}(M)| = 1$ by Corollary 4.11 and Lemma 4.12. Thus $|\theta_{max}(M/I)| = 1$, proving the result. \Box

In the following corollary, we assume that $\theta_{max}(X) = \bigcup_{M \leq X} \theta_{max}(M)$.

Corollary 4.14. Let X be a finite *BCI*-algebra with exactly n maximal ideals $M_i(1 \le i \le n)$. Then $\theta_{max}(X) = \{(X, M_i) \mid 1 \le i \le n\}$.

Proof. Since X is a finite *BCI*-algebra, by Corollary 2.20, $(M_i)_X = M_i$ for all maximal ideal M_i of X and so (X, M_i) is the unique maximal θ -pair of M_i , by Corollary 4.11. Hence $\theta_{max}(X) = \{(X, M_i) \mid 1 \le i \le n\}$, as required.

As an application of Theorem 3.17, the following result states the useful properties of finite BCI-algebras.

Theorem 4.15. Let X be a finite BCI-algebra. Then following statements are holds:

- (i) For each $M \leq X$ and all maximal ideal θ -pair (A, B) for $M, C_{X/B}(A/B) \neq 0$.
- (ii) For each $M \leq X$ there exists a maximal ideal θ -pair (A, B) for M such that $X = A + M, A \cap M_X = B$ and A/B is commutative.
- (iii) For each $M \leq X$, there exists a maximal ideal θ -pair (A, B) for M such that X = A + M and A/B is nilpotent.

Proof. (i) Let M < X and (A, B) be a maximal ideal θ -pair for M. By Lemma 4.8(ii), there exists a maximal ideal θ -pair (C, D) for M such that $A/B \cong C/D$. Now, by assumption, Theorem 3.17 and Lemma 3.13, C/D is a solvable ideal of X/D and consequently $(C/D)^{(1)}$ is a closed ideal of X/D which is contained properly in C/D. So, $(C/D)^{(1)} = 0$ because $(C, D) \in \theta_{max}(M)$, which implies that C/D and then A/B are commutative algebras. It follows that $A/B \subseteq C_{X/B}(A/B)$, showing that $C_{X/B}(A/B) \neq 0$.

(ii) Since X is a solvable BCI-algebra, by Theorem 3.16, it has a series $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_n = 0$ of closed ideals in X such that X_{k-1}/X_k is a commutative minimal ideal of X/X_k for k = 1, ..., n. Now let M be a maximal ideal of X and there exists $i \in \mathbb{N}$ such that $X_i \subseteq M$ but $X_{i-1} \notin M$. We observe that $(X_{i-1}, X_i) \in \theta(M)$. Then $X_{i-1} + M = X$ and $X_{i-1} \cap M_X = X_i$. If $(X_{i-1}, X_i) \in \theta_{max}(M)$, then as X_{i-1}/X_i is commutative, the result holds; otherwise, by Lemma 4.8(ii), we choose an ideal θ -pair $(C, D) \in \theta_{max}(M)$ such that $(X_{i-1}, X_i) \leq (C, D)$ and $C/D \cong X_{i-1}/X_i$. It follows that C/D is commutative. Obviously, C + M = X and $C \cap M_X = D$, as desired.

(iii) Follows from (ii).

Corollary 4.16. Let X be a nilpotent *BCI*-algebra. Then for any $M \leq X$ and each maximal ideal θ -pair (A, B) for M, $Z(X/B) \neq 0$.

Proof. Since X is nilpotent, the proof follows at once from Lemma 3.8 and Theorem 3.10. \Box

Theorem 4.17. Let X be a nilpotent *BCI*-algebra. Then for any M < X, there exists a maximal closed ideal θ -pair (A, B) for M such that $A/B \subseteq Z(X/B)$.

Proof. Let M be an arbitrary maximal ideal of X. If X/M_X has no proper closed ideal, then obviously (X, M_X) is a maximal closed ideal θ -pair for M such that $X/M_X = Z(X/M_X)$. In the contrary case, X/M_X contains a minimal closed ideal N/M_X such that (N, M_X) is a maximal closed ideal θ -pair for M. Now, using the assumption and Theorem 3.10, $(N/M_X) \cap Z(X/M_X) \neq 0$ and consequently $N/M_X \subseteq Z(X/M_X)$, as required.

In the following theorem, we give a necessary and sufficient condition on a fixed BCI-algebra X such that X to be nilpotent algebra.

Theorem 4.18. Let X be a *BCI*-algebra. Then following statements are equivalent:

- (i) X is nilpotent.
- (ii) For any closed maximal ideal M of X, M is a commutative nilpotent ideal of X.

Proof. (i) \Rightarrow (ii) Let M be any closed maximal ideal of X. Hence M is a nilpotent ideal. Since $M_X = M$, by Corollary 4.11, $|\theta_{max}(M)| = 1$ and (X, M) is the unique maximal θ -pair of M. First, we assume that M is minimal. Then by Corollary 3.11, $M \subseteq Z(X)$. Now if Z(X) = X, then X is nilpotent of class 1 and so M is commutative, by Corollary 3.7. Moreover, if Z(X) = M, then by Theorem 4.17, $X/M \subseteq Z(X/M)$ and so

$$X/Z(X) = X/M = Z(X/M) = Z(X/Z(X)).$$

Thus X/Z(X) is of class 1 and so it is commutative. It follows that $X^{(1)} \subseteq Z(X)$ by Theorem 2.8, and M = Z(X) is a commutative ideal of X, as desired. Next, let M contains a minimal closed ideal N of X. Since $(X, M) \in \theta_{max}(M)$, by Lemma 4.8 and Corollary 4.13, we deduced that (X/N, M/N) is the unique maximal θ -pair of M/N. Thus $(X/N)/(M/N) \subseteq Z((X/N)/(M/N))$ by Theorem 4.17, and it follows that X/M is commutative BCI-algebra by Theorem 3.6. Now M is commutative ideal, by Theorem 2.6.

(ii) \Rightarrow (i) Since *M* is a commutative closed ideal of *X*, it follows that *X*/*M* is a commutative *BCI*-algebra, and so *X*/*M* is nilpotent. Now the result follows from Theorem 3.9.

References

- J. C. Beidleman, H. Smith, A note on supersoluble maximal subgroups and theta-pairs, Publ. Mat., 37(1)(1993), 91–94.
- [2] S. A. Bhatti, M. A. Chaudhry, *Ideals in BCI-algebras*, Int. J. Math. Educ. Sci. Tech., 21(4)(1990), 637–643.

- [3] X. Guo, On theta pairs for a maximal subgroup, Comm. Algebra., 22(1994), 4653-4659.
- [4] W. Hung, Nil-radical in BCI-algebras, Math. Japon, 37(1992), 363–366.
- [5] Y. Imai, K. Iséki, On axiom system of propositional calculi. XIV, Proc. Japan Academy, 42(1966), 19–22.
- [6] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Academy, 42(1966), 26–29.
- [7] S. Li, A note on theta pairs for maximal subgroups, Commun. Algebra., 26(1998), 4277-4284.
- [8] E. Mohammadzadeh, R. A. Borzooei, Engel, nilpotent and solvable BCI-algebras, An. St. Univ. Ovidius Constanta, 27(1)(2019), 169–192.
- [9] N. P. Mukherjee, P. Bhattacharya, On theta pairs for a maximal subgroup, Proc. Amer. Math. Soc., 109(1990), 585–596.
- [10] A. Najafi, A. Borumand Saeid, E. Eslami, Commutators in BCI-algebras, J. Intell. Fuzzy Syst., 31(1)(2016), 357–366.
- [11] A. Najafi, A. Borumand Saeid, E. Eslami, *Centralizers of BCI-algebras*, Miskolc Math. Notes, **22(1)**(2021), 407–425.
- [12] L. H. Shi, An axiom system of BCI-algebras, Math. Japon., 30(3)(1985), 351–352.
- [13] H. Yisheng, BCI-Algebra, Science Press, Beijing, 2006.