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Abstract. In this paper, first we show that all finite BCI-algebras are solvable. We then

introduce the notion of a θ-pair for a maximal ideal of a BCI-algebra. Proving various

properties of maximal θ-pairs, we use them to characterize solvable and nilpotent BCI-

algebras.

1. Introduction

The concepts of BCK-algebras, and the more general BCI-algebras, were in-
troduced by Y. Imai and K. Iséki [5, 6] in 1966. Since this time, various authors
have studied and developed many concepts related to these algebraic structures; see
for example [2, 8, 10, 11, 12]. In [4], Huang used the notion of nilpotency in ring
theory to introduce the notion of nilpotency in BCI-algebras. See also [8], where
this and a new definition of commutators and solvability in a BCI-algebra was
given, and then used to prove that every finite nilpotent BCI-algebra is solvable.
In this paper, we first improve this result (see [8, Theorem 6.3]) and show that every
finite BCI-algebra is solvable. Also we introduce the notion of θ-pair for a maximal
ideal of a BCI-algebra and give some results for nilpotency and solvability of a
BCI-algebra. This is similar to the concept of θ-pair for any maximal subgroup
of a group as introduced by Mukherjee and Bhattacharya [9], and Beidleman and
Smith [1]. This concept has since been further studied by a number of authors,
including Guo [3] and Li [7]. We also look at other useful properties of solvable and
nilpotent BCI-algebras.
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2. Preliminaries and Basic Results

In this section we give some basic results which will be used in the rest of the
paper.

A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0), if for any x, y, z ∈ X, it sat
isfies the following axioms:
(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI3) x ∗ x = 0,
(BCI4) x ∗ y = y ∗ x = 0 implies x = y. [5, 6]

In any BCI-algebra X, one can define a partial order by putting x ≤ y if and
only if x ∗ y = 0.
Theorem 2.1.([13]) In any BCI-algebra X the following properties are satisfied
for any x, y, z ∈ X:
(BCI5) x ∗ 0 = x.
(BCI6) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(BCI7) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.
(BCI8) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
(BCI9) x ∗ (x ∗ (x ∗ y)) = x ∗ y.
(BCI10) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).

Theorem 2.2.([13]) Let X be a nonempty set. Then X is a BCI-algebra if and
only if there is a partial ordering ≤ on X such that for any x, y, z ∈ X, the following
conditions hold:

(i) (x ∗ y) ∗ (x ∗ z) ≤ (z ∗ y),

(ii) x ∗ (x ∗ y) ≤ y,

(iii) x ∗ y = 0 if and only if x ≤ y.

A nonempty subset S of a BCI-algebra X is said a subalgebra of X if x ∗ y ∈ S for
any x, y ∈ S. Also a nonempty subset I of a BCI-algebra X is said an ideal of X
if 0 ∈ I and if x ∗ y ∈ I, y ∈ I, imply x ∈ I. Obviously, X and {0} (we write 0 is
an ideal of X, for convenience) are ideals of X, which called the trivial ideals of X.
An ideal I is called proper, if I ̸= X and is called closed, if it is also a subalgebra
of X.

A BCI-algebra X is called commutative if x ≤ y implies x ∧ y = x, where
x ∧ y = y ∗ (y ∗ x), for all x, y ∈ X. An ideal I of a BCI-algebra X is called
commutative if x ∗ y ∈ I implies x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (y ∗ x))) ∈ I for all x, y ∈ X.

In a BCI-algebra X we denote by BCK(X) the BCK-part of X and set

BCK(X) = {x ∈ X : 0 ∗ x = 0}.

If X = BCK(X), then X is called a BCK-algebra. One can easily check that the
BCK-part of X is a closed ideal of X. A BCI-algebra X is said to be p-semisimple
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if 0 ∗ (0 ∗x) = x, for all x ∈ X. The set {x ∈ X : 0 ∗ (0 ∗x) = x} is called the center
of X and is denoted by C(X) (see [12]).

Let S ⊆ X be a non-empty set. The least ideal of X containing S is said the
generated ideal of X by S and is denoted by ⟨S⟩. A proper ideal M of X is called a
maximal ideal if ⟨M ∪{x}⟩ = X, for any x ∈ X \M . We note that M is a maximal
ideal of X if and only if M ⊆ I ⊆ X implies that M = I or I = X, for any ideal
I of X. We call a maximal ideal of X that is closed, as a closed maximal ideal
of X. If A and B are two ideals of X, then the symbol A + B will be used for
⟨A ∪ B⟩. Moreover, If A and B are closed, then A + B is a closed ideal of X (see
[13], Proposition 1.4.15).

Let I be an ideal of a BCI-algebra X and x, y ∈ X. Following [8], we call the
element

[x, y] = ((x ∧ y) ∗ (y ∧ x)) ∗ ((0 ∗ (y ∗ x))),
is the commutator of x1 and x2 of weight 2.
In general, the element [x1, x2, ..., xn] = [[x1, ..., xn−1], xn] is a commutator of weight
n ≥ 2, where [x1] = x1.

Let I be an ideal of a BCI-algebra X. Then the relation ∼ defined by x ∼ y if
and only if x ∗ y, y ∗ x ∈ I is a congruence relation on X. Let Ix denote the class of
x ∈ X and X/I denote the set of all classes Ix, where x ∈ X. Then (X/I, ∗, I0) is
a BCI-algebra, where Ix ∗ Iy = Ix∗y and Ix = Iy if and only if x ⩽ y. The BCI-
algebra X/I is called the quotient BCI-algebra of X determined by I. Obviously,
for any x ∈ I, Ix = I if I is a closed ideal of X. Throughout the paper, X means a
BCI-algebra (X, ∗, 0).

Lemma 2.3.([8]) For any x, y ∈ X, the following hold:

(i) [x, y] ∗ x ≤ (0 ∗ x),

(ii) 0 ∗ [x, y] = 0,

(iii) [0 ∗ x, y] = 0.

Theorem 2.4.([13]) An ideal I of a BCI-algebra X is closed if and only if 0∗x ∈ I,
for any x ∈ I. Moreover, if X is of finite order, then any ideal of X is closed.

Theorem 2.5.([13]) Let S be a nonempty subset of a BCI-algebra X and let
A = {x ∈ X : (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0; for some a1, a2, ..., an ∈ S}. Then
⟨S⟩ = A ∪ {0}. Moreover, if I is an ideal of X, then

⟨A ∪ S⟩ = {x ∈ X : (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an ∈ A; for some a1, ..., an ∈ S}.

Theorem 2.6.([13]) A closed ideal I of a BCI-algebra X is commutative if and
only if the quotient algebra X/I is a commutative BCI-algebra.

Definition 2.7.([8]) Let X1, X2, ..., Xn be a non-empty subsets of X. A commuta-
tor of X1 and X2 is defined as [X1, X2] = ⟨{[x1, x2] : x1 ∈ X1, x2 ∈ X2}⟩. Moreover,
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for n ≥ 2, [X1, ..., Xn] = [[X1, ..., Xn−1], Xn]. Hence [X,X] = ⟨{[x, y] : x, y ∈ X}⟩
and is called the derived ideal of X, which is denoted by X ′ = X(1).

Theorem 2.8.([8]) Let I be an ideal of X. Then X/I is commutative if and only
if X(1) ⊆ I.

By Lemma 2.3(ii), for any [x, y] ∈ X(1), 0∗ [x, y] = 0 ∈ X(1), which implies that
X(1) is a closed ideal of X.

Corollary 2.9. Let X be a BCI-algebra. Then X is commutative if and only if
X(1) = 0.

By using Theorems 2.6 and 2.8, we conclude the following result.

Corollary 2.10. Let I be a closed ideal of BCI-algebra X. Then I is commutative
if and only if [x, y] ∈ I, for all x, y ∈ X.

Lemma 2.11. Let X be a BCI-algebra and I be an ideal of X. Then for any
x, y ∈ X, [Ix, Iy] = I[x,y].

Proof. Let x, y ∈ X. Then

[Ix, Iy] = ((Iy ∗ (Iy ∗ Ix)) ∗ (Ix ∗ (Ix ∗ Iy))) ∗ (I0 ∗ (Iy ∗ Ix))

= (I(y∗(y∗x)) ∗ I(x∗(x∗y))) ∗ I(0∗(y∗x))
= I((y∗(y∗x))∗(x∗(x∗y)))∗(0∗(y∗x)) = I[x,y].

Theorem 2.12.([13]) If I is a commutative ideal of a BCI-algebra X, then every
closed ideal A of X with I ⊆ A, is commutative.

Definition 2.13. Let I be a subalgebra of a BCI-algebra X. The set

RX(I) = {x ∈ X : [x, a] ∈ I, for any a ∈ I},

is called the normalizer of I in X. Since I is a subalgebra of X, it follows that
I ⊆ RX(I). Obviously, if X is commutative, then RX(I) = X.

Lemma 2.14. Let X be a BCI-algebra and I be a subalgebra of X. Then
C(X) ⊆ RX(I).

Proof. Suppose that x ∈ C(X). Then 0 ∗ (0 ∗ x) = x. Now for any y ∈ X,

[x, y] = ((y ∗ (y ∗ x)) ∗ (x ∗ (x ∗ y))) ∗ (0 ∗ (y ∗ x))

≤ (x ∗ (x ∗ (x ∗ y))) ∗ (0 ∗ (y ∗ x)) by (BCI7) and Theorem 2.2(ii)
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= (x ∗ y) ∗ (0 ∗ (y ∗ x)) by (BCI9)

= (x ∗ y) ∗ ((0 ∗ y) ∗ (0 ∗ x)) by (BCI10)

= (x ∗ y) ∗ ((0 ∗ (0 ∗ x)) ∗ y) by (BCI6)

= (x ∗ y) ∗ (x ∗ y) = 0 by assumption and (BCI3)

Hence for all y ∈ X, [x, y] = 0 ∈ I and so C(X) ⊆ RX(I), as required.

Corollary 2.15. Let X be a p-semisimple BCI-algebra and I be a subalgebra of
X. Then RX(I) = X.

Proof. Since X is p-semisimple, C(X) = X. Now the result holds by Lemma
2.14.

Example 2.16. Let X = {0, 1, 2, 3, 4, 5} be a BCI-algebra with the Cayley table
as follows:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 0 1 0 1 5
2 2 2 0 2 0 5
3 3 3 3 0 0 5
4 4 3 4 1 0 5
5 5 5 5 5 5 0

By simple calculations we obtain I = {0, 2, 4} is a subalgebra of X such that
1 ̸∈ RX(I), because [1, 4] = 1, and RX(I) = {0, 2, 3, 4, 5}.

Lemma 2.17. Suppose that A is a subalgebra and B is a closed ideal of a BCI-
algebra X. Then [A,B] ⊆ B if and only if A ⊆ RX(B).

Proof. Let a ∈ A. Then for any b ∈ B, [a, b] ∈ [A,B] ⊆ B. Hence [a, b] ∈ B and so
A ⊆ RX(B).

Conversely, if A ⊆ RX(B), then for any a ∈ A, b ∈ B, [a, b] ∈ B. Now let
u ∈ [A,B] = ⟨[a, b] : a ∈ A, b ∈ B⟩. By Theorem 2.5, we get

(· · · ((u ∗ x1) ∗ x2) ∗ · · · ) ∗ xn = 0 ∈ B,

for some n ∈ N, where xi = [ai, bi], ai ∈ A, bi ∈ B and i = 1, ..., n. Since B is an
ideal of X, it follows that u ∈ B, which shows that [A,B] ⊆ B, as required.
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Lemma 2.18. Let I be a subalgebra of a BCI-algebra X. Then NX(I) =
⟨RX(I)⟩ =

⋂
RX(I)⊆J J where J is any ideal of X such that RX(I) ⊆ J , is the

closed ideal of X contains I. Moreover, if I is a commutative closed ideal of X,
then NX(I) is the largest commutative closed ideal of X containing I.

Proof. First by Lemma 2.3(iii), for any x ∈ NX(I) and a ∈ I, [0 ∗ x, a] = 0 ∈ I and
thus 0 ∗ x ∈ RX(I), which shows that NX(I) is the closed ideal of X. Also if I is
a commutative closed ideal of X, then by Theorem 2.12, NX(I) is commutative.
Next, let K be a commutative closed ideal of X such that I ⊆ K. By Corollary 2.10,
for all k ∈ K and a ∈ I, [k, a] ∈ I and so K ⊆ RX(I) ⊆ NX(I), which shows that
NX(I) is the largest commutative closed ideal of X containing I, as required.

We observe that if I is a closed ideal of a BCI-algebra X, then CX(I) ⊆ NX(I),
where CX(I) = ⟨{x ∈ X : [x, a] = 0, [a, x] = 0,∀a ∈ I}⟩ is said the centralizer of I
in X (see [8]).

Definition 2.19. For an ideal U of X, let UX , the core (with respect to X) of U ,
be the largest closed ideal of X contained in U . Obviously if U is a closed ideal of
X, then UX = U .

Corollary 2.20. If X is a finite BCI-algebra and I is an ideal of X, then IX = I.

Proof. Since by Theorem 2.4, all ideals of X are closed, we deduced that IX = I,
for any ideal I of X.

Theorem 2.21.([13]) Suppose that A and B are ideals of a BCI-algebra X and
let AB = ∪a∈ABa, where Ba is an equivalence class in X/B. If B is closed, then
AB = A+B, where A+B = ⟨A ∪B⟩.

Theorem 2.22.([13]) If H is a subalgebra of X and K is a closed ideal of X, then
HK/K ∼= H/(H ∩K).

3. Nilpotent and Solvable BCI-algebras

In this section, we provide some results concerning nilpotent and solvable BCI-
algebras. In [8], Mohammadzadeh and Borzooei introduced the concept of nilpotent
BCI-algebra, according to nilpotency in group theory, as follows:

Definition 3.1.([8]) Let Z0(X) = 0, Zn(X) = ⟨{x : [x, y1, ..., yn] = 0, for any
y1, ..., yn ∈ X}⟩ for any n ≥ 1. By Lemma 2.3(iii), Zn(X) is a closed ideal of X.
The sequence of ideals

0 = Z0(X) ⊆ Z1(X) ⊆ ... ⊆ Zn(X),

is called the upper central series of X. Its i-th term Zi(X) is called the i-th center
of X. Now, X is called nilpotent, if there exists n ∈ N such that Zn(X) = X. The
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smallest such integer is called the class of X. We note that Z1(X) = Z(X) = ⟨{x :
[x, y] = 0, for any y ∈ X}⟩.

Example 3.2. Let − be the subtraction of integers. Then X = (Z,−, 0) is a
p-semisimple BCI-algebra and so C(X) = X (see [13], Example 5.3.2). It follows
that [x, y] = 0 for all x, y ∈ X, by the proof of Lemma 2.14 and hence Z1(X) = X,
which shows that X is nilpotent of class at most 1.

Lemma 3.3.([8]) Let i > 0. Then [Zi(X), X] ⊆ Zi−1(X).

Theorem 3.4.([8]) Let X be a BCI-nilpotent algebra and I be a nontrivial proper
closed ideal of X. Then I ̸= NX(I).

Proof. Assume that X is nilpotent of class r with the upper central series:

0 = Z0(X) ⊆ Z1(X) ⊆ ... ⊆ Zr(X) = X.

Let A = {m : Zm(X) ⊈ I, 1 ≤ m ≤ r}. It is obvious that r ∈ A. Let k = min A.
Hence Zk(X) ⊈ I and Zk−1(X) ⊆ I. Now, we observe that by Lemma 3.3,

[Zk(X), I] ⊆ [Zk(X), X] ⊆ Zk−1(X) ⊆ I.

Hence by Lemma 2.17, Zk(X) ⊆ RX(I), it follows that I ⊂ RX(I) ⊆ NX(I) and
the result holds.

The following immediate corollary of the above theorem is straightforward.

Corollary 3.5. If X is a BCI-nilpotent algebra and M is a closed maximal ideal
of X, then NX(M) = X.

Theorem 3.6.([8]) A BCI-algebra X is commutative if and only if it is nilpotent
of class at most 1.

Corollary 3.7. For any BCI-algebra X, the following properties are equivalent:

(i) X is nilpotent of class at most 1,

(ii) the zero ideal {0} is commutative,

(iii) every closed ideal of X is commutative.

Proof. The proof is trivial from Theorem 2.5.19 and Corollary 2.5.20 of [13], and
Theorem 3.6.

Lemma 3.8.([8]) If X is nilpotent BCI-algebra, then any subalgebra of X is
nilpotent. Also if I is a BCI-ideal of X, then X/I is nilpotent.
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Theorem 3.9.([8]) Let I be an ideal of BCI-algebra X and n,m ∈ N. If I is a
nilpotent BCI-ideal of class m and X/I is nilpotent of class n, then X is nilpotent
of class n+m.

Theorem 3.10.([8]) Let X be a nilpotent BCI-algebra of class n ≥ 1 and N be a
nontrivial closed ideal of X. Then N ∩ Z(X) ̸= 0.

Corrollary 3.11.([8]) Let X be a nilpotent BCI-algebra of class n ≥ 1. If N is a
minimal (closed) ideal of X, then N ⊆ Z(X).

The following concept was introduced by Mohammadzadeh and Borzooei [8],
by applying a new definition of derived ideal (Definition 2.7).

Definition 3.12. Let X be a BCI-algebra, X(1) = [X,X] and for any n ∈
N, X(n) = [X(n−1), X(n−1)]. Then X is called solvable if there exists n ∈ N such
that X(n) = 0. The smallest such n is called derived length of X. Clearly by Lemma
2.3(iii), X(n) for any n ∈ N is a closed ideal of X.

Lemma 3.13.([8]) If X is a solvable BCI-algebra, then any subalgebra of X is
solvable. Also if I is a BCI-ideal of X, then X/I is solvable.

Theorem 3.14.([8]) Let I be an ideal of X. If I and X/I are solvable BCI-
algebras, then X is a solvable BCI-algebra.

Theorem 3.15.([8]) LetX be a finite BCI-algebra and [x, y] ≤ x, for any x, y ∈ X.
Then X is solvable.

In the following theorem, we give a necessary and sufficient condition on a
BCI-algebra X, such that X to be solvable.

Theorem 3.16. The BCI-algebra X is solvable if and only if there exists a chain
of closed ideals X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xk = 0 such that each quotient
Xl/Xl+1, 0 ≤ l ≤ k − 1 is commutative.

Proof. Since X is solvable, there exists i ∈ N such that X(i) = 0. Then we have a
sequence of closed ideals:

X ⊇ X(1) ⊇ X(2) ⊇ · · · ⊇ X(i) = 0.

We show that each quotient X(l)/X(l+1)(1 ≤ l ≤ i − 1), is commutative. Let
a, b ∈ X(l). Since X(l+1) = [X(l), X(l)], it follows that [a, b] ∈ X(l+1) and then by
Lemma 2.11,

[X(l+1)
a , X

(l+1)
b ] = X

(l+1)
[a,b] = X(l+1) = X

(l+1)
0 .

Therefore X(l)/X(l+1) is commutative, by Corollary 2.9.
Conversely, let X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xk = 0 be the closed ideals of

X such that each quotient Xl/Xl+1, 0 ≤ l ≤ k − 1 is commutative. Therefore Xk
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and Xk−1/Xk are solvable, which show that Xk−1 is solvable by Theorem 3.14.
Similarly, Xk−2/Xk−1 is solvable, and thus Xk−2 is solvable. Continuing this way,
X1 is solvable. Next, since X/X1 is commutative, it follows that X0 = X is solvable,
as desired.

By using the concept of solvable BCI-algebras, we have the following main
theorem.

Theorem 3.17. Let X be a finite BCI-algebra. Then X is solvable.

Proof. Suppose that X is a finite BCI-algebra and B = BCK(X) is the BCK-
part of X. Since by Lemma 2.3(ii), 0 ∗ [x, y] = 0 for all x, y ∈ X, it follows that
X(1) ⊆ B. We observe that if |B| ≤ 2, then X(1) = 0 and so by Corollary 2.9, X is
commutative, which shows that X is solvable. Next, we assume that |B| > 2. Then
by Lemma 2.3(i), [x, y] ∗ x ≤ 0 ∗ x = 0 for all x, y ∈ B. Thus [x, y] ∗ x = 0 and so
[x, y] ≤ x. Hence by Theorem 3.15, B is solvable. Now X/B is solvable, since X/B
is commutative by Theorem 2.8 which, together with Theorem 3.14, implies that
X is solvable.

Remark 3.18. Note that, the above theorem was proved in [8, Theorem 6.3] with
extra condition that G must be a nilpotent BCI-algebra.

As an application of Theorem 3.17, we give the following main result.

Corollary 3.19. A finite BCI-algebra is nilpotent.

Proof. Assume that X is a finite BCI-algebra. By Theorem 3.17, X is solvable.
Suppose on the contrary, that X is non-nilpotent of the smallest order. If X(1) = 0
then X is commutative by Corollary 2.9 and so X is nilpotent, which is impossible.
Moreover, if X(1) = X, then X = X(i) for any i ∈ N, which shows that X is non-
solvable, a contradiction. Now X/X(1) and X(1) are nilpotent and so by Theorem
3.9, X is nilpotent, again a contradiction. This completes the proof.

4. θ-pairs in BCI-algebras

In this section, we determine the concept of θ-pair for a maximal ideal in a
BCI-algebra. Moreover, we obtain some results on the maximal θ-pairs when the
BCI-algebra is solvable or nilpotent. For convenience, we denote M⋖X to indicate
that M is a maximal ideal of a BCI-algebra X. The following definition is essential
in our investigation.

Definition 4.1. Let M be a maximal ideal of BCI-algebra X. A pair (C,D) of
subalgebras of X is said to be a θ-pair for M if it satisfies the following conditions:

(a) D is a closed ideal of X, contained in C;
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(b) D ⊆ M and C ⊈ M ;

(c) C/D includes properly no nonzero closed ideal of X/D.

Furthermore, if C is an (a closed) ideal of X, then the pair (C,D) is called an
(a closed) ideal θ-pair for M . This concept will be use to investigate the influence
of the maximal ideals on the structure of certain BCI-algebras.

If M is a maximal ideal of X, then we denote by θ(M), the set of all θ-pairs of
M , and define a partial order on it by means of (C1, D1) ≤ (C2, D2) if and only if
C1 is a subalgebra of C2, whence θ(M) will contain maximal elements with respect
to this ordering, which called maximal θ-pairs. We denote the set of all maximal
θ-pairs for M , by θmax(M). Also we call a closed ideal θ-pair (A,B) ∈ θ(M) is
maximal closed ideal θ-pair, if there is no closed ideal θ-pair (C,D) ∈ θ(M) such
that A is a proper subalgebra of C.

This is similar to the concept of θ-pair for any maximal subgroup of a finite
group as suggested by Mukherjee and Bhattacharya [9], which has since been further
investigated by a number of authors (see [3, 7]). Also Beidleman and Smith applied
this concept for infinite group (see [1]).

Example 4.2. Let X = {0, a, b, c, d} and the binary operation ∗ be defined as
follows:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b a 0 b a
c c c c 0 c
d d d d d 0

Then X is a BCI-algebra. Let M = {0, a, b, c}, A = {0, c, d} and B = {0, c}. Hence
M is a closed maximal ideal of X, A is a subalgebra of X which is not an ideal,
B ⊂ M = MX and (A,B) ∈ θ(M).

Example 4.3. Let X = {0, 1, a, b, c} and define the binary operation ∗ on X by
the following table:

∗ 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Then (X, ∗, 0) is a BCI-algebra. Let M = {0, 1, a}, C = {0, 1, b} and D = {0, 1}.
Then M ⋖X and (C,D) is a closed maximal ideal θ-pair for M .
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Example 4.4. For a BCI-algebra X = (Z,−, 0), where − be the subtraction of
integers, we define two closed maximal ideals of X, as M1 = {2n : n ∈ Z} and M2 =
{3n : n ∈ Z}. We conclude that (X,M1) ∈ θmax(M1) and (X,M2) ∈ θmax(M2).

Lemma 4.5. Let M be a maximal ideal of a BCI-algebra X and (C,D) ∈ θ(M).
Then D ⊂ MX .

Proof. Since D is a closed ideal of X such that D ⊂ M , it follows that D ⊂ MX .

The following theorem is a useful fact in proving our next results.

Theorem 4.6. Let X be a BCI-algebra, M be a maximal ideal of X and (C,D)
be an ideal θ-pair for M . Then

(i) D = (C ∩M)X .

(ii) D = C ∩MX if (C,D) is a closed ideal θ-pair for M ; otherwise D = CX .

Proof. (i) Obviously, D ⊆ (C ∩M)X . For the converse, assume by way of contra-
diction that (C ∩M)X ⊈ D. Then D+ (C ∩M)X is a closed ideal of X containing
properly D and contained in C. It follows that C = D + (C ∩ M)X , because
(C,D) ∈ θ(M). Hence X = ⟨C,M⟩ = M + D + (C ∩ M)X = M , which is a
contradiction.

(ii) First suppose that C is a closed ideal of X. Then C∩MX ⊆ (C∩M)X and
so by (i), C ∩MX ⊆ D, whence D = C ∩MX . Next, assume that C is not closed
ideal of X. Then CX is a closed ideal of X containing D. Since CX is a proper
ideal of C, it follows that D = CX by the definition of θ-pair.

Corollary 4.7. If (A,B), (C,D) ∈ θ(M) and (A,B) ≤ (C,D), then B ⊆ D.

Proof. Since A ⊆ C, it follows that B = (A ∩M)X ⊆ (C ∩M)X = D, by Theorem
4.6.

Lemma 4.8. Let X be a BCI-algebra, M ⋖X and I be an ideal of X such that
I ⊆ M .

(i) If (A,B) is a (an ideal) θ-pair for M and I ⊆ B, then (A/I,B/I) is a (an
ideal) θ-pair forM/I. Conversely, if (A/I,B/I) is a (an ideal) θ-pair forM/I,
then (A,B) is a (an ideal) θ-pair for M . In particular, (A,B) is a maximal
member in θ(M) if and only if (A/I,B/I) is a maximal member in θ(M/I).

(ii) If (A,B) is a closed ideal θ-pair of M , then θ(M) contains a maximal closed
ideal θ-pair (C,D) such that (A,B) ≤ (C,D) and A/B ∼= C/D.

Proof. (i) This is trivial from the definition of θ-pair.
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(ii) If (A,B) is not a maximal member in θ(M), then (A,B) ≤ (A1, B1), where
(A1, B1) ∈ θ(M). If B = B1, then B1 = B ⊂ A ⊆ A1, and so A1/B1

includes properly nonzero closed ideal A/B1 of X/B1, contracting the fact
that (A1, B1) ∈ θ(M), whence by Corollary 4.7, B is a proper subalgebra of
B1. Also A ∩ B1 = B; otherwise we will have B ⊂ A ∩ B1 ⊂ A, which is
impossible by definition of θ-pair. It is readily verified that A + B1 = A1.
Next, we prove that A1 is a closed ideal of X. Let y ∗ x, x ∈ A1. Since
A1 = B1 +A, then by Theorem 2.5, and (BCI6) we get

(· · · ((y ∗ x) ∗ a1) ∗ · · · ) ∗ an = (· · · ((y ∗ a1) ∗ a2) ∗ · · · ∗ an) ∗ x ∈ B1,

for some n ∈ N and a1, ..., an ∈ A. Since A ⊆ A1, it follows that y ∈ A1+B1 =
A + B1 + B1 = A + B1 = A1, as required. Also since A is a closed ideal of
X, then as A + B1 = A1, we deduced that A1 is closed. Now by Theorems
2.21 and 2.22

A1/B1 = (A+B1)/B1 = AB1/B1
∼= A/A ∩B1

∼= A/B.

Finally, if (A1, B1) is not maximal in θ(M), we may replace (A,B) by (A1, B1)
in the above and derive a same conclusion.

Lemma 4.9. There exists a closed ideal θ-pair in θ(M) for every maximal ideal M
of X.

Proof. Suppose that C is a closed ideal of X such that C ⊈ M and D denotes the
sum of all closed ideals I in X such that I ⊆ M ∩ C. We say that if C/D has
no contains any nonzero closed ideal of X/D, then (C,D) is a closed ideal θ-pair;
otherwise, assume that E/D is a minimal closed ideal of X/D which is contained
in C/D. Now, it is easy to see that (E,D) is a closed ideal θ-pair for M .

Theorem 4.10. Let X be a BCI-algebra, M be a maximal ideal of X and (C,D)
be a maximal closed ideal θ-pair for M . Then D = MX .

Proof. It is sufficient to show that if I is a closed ideal of X contained in M , then
I ⊆ D. Suppose on the contrary that I ⊈ D. We note that if I ⊆ C, it follows that
D+ I = C, because (C,D) ∈ θ(M) and then X = M +C = M +D+ I = M , which
is impossible. Hence I ⊈ C and C is a proper ideal of C + I. Next, we claim that
(C + I,D + I) ∈ θ(M). It is easy to see that the pair (C + I,D + I) satisfies both
conditions (a) and (b) in the definition of θ-pair. Now, let A be a closed ideal of X
such that D+ I ⊆ A ⊆ C + I. Then (C ∩A)/D is a closed ideal of X/D contained
in C/D. Hence either C ∩A = D or C ∩A = C. To continue the proof, we consider
two cases:
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Case I. C ∩ A = D. In this case we show that D + I = A. Let a ∈ A ⊆ I + C.
Since I and C are ideals of X, then by Theorem 2.5, we get (· · · ((a ∗x1) ∗x2) · · · ) ∗
xn ∈ I, for some n ∈ N and x1, x2, ..., xn ∈ C. It follows that there exists i ∈ I such
that (· · · ((a ∗ x1) ∗ x2) · · · ) ∗ xn = i. Hence by (BCI3), and (BCI6), we get

((· · · ((a ∗ i) ∗ x2) · · · ) ∗ xn) ∗ x1 = ((· · · ((a ∗ x1) ∗ x2) · · · ) ∗ xn) ∗ i = i ∗ i = 0.

Since C is an ideal of X and x1, ..., xn ∈ C, then a ∗ i ∈ C. Moreover a ∗ i ∈ A and
thus a ∗ i ∈ A ∩ C = D. Therefore a ∈ D + I and hence A ⊆ D + I. Therefore
A = D + I.

Case II. C ∩ A = C. Then C ⊆ A and so I + C ⊆ A, because I ⊆ A. Hence
A = C + I.
Therefore (C + I,D + I) ∈ θ(M), which contradicts the maximality of (C,D) in
θ(M).

Corollary 4.11. Let M be a closed maximal ideal of a BCI-algebra X. Then
θmax(M) = {(X,M)}.

Proof. Since M is a closed ideal of X, (X,M) ∈ θ(M). Furthermore, if (A,B) is
another maximal θ-pair for M in X, then A = X and so (X,B) is a maximal closed
ideal θ-pair for M in X. Hence by Theorem 4.10 and assumption, B = MX = M
and so θmax(M) = {(X,M)}, as required.

Lemma 4.12. Let X be a BCI-algebra, M ⋖X and I be an ideal of X such that
I ⊆ M . Then |θmax(M/I)| ≤ |θmax(M)|.

Proof. By Lemma 4.8, the map

τ : θmax(M/I) → θmax(M)

(C/I,D/I) 7→ (C,D)

is well-defined. Now, it is easy to see that the map τ is one-to-one.

As an application of Lemma 4.12, we get the following corollary.

Corollary 4.13. Let M be a closed maximal ideal of a BCI-algebra X and I be
an ideal of X such that I ⊆ M . Then |θmax(M/I)| = 1.

Proof. It is sufficient to observe that |θmax(M/I)| ≤ |θmax(M)| = 1 by Corollary
4.11 and Lemma 4.12. Thus |θmax(M/I)| = 1, proving the result.

In the following corollary, we assume that θmax(X) =
⋃

M⋖X θmax(M).

Corollary 4.14. Let X be a finite BCI-algebra with exactly n maximal ideals
Mi(1 ≤ i ≤ n). Then θmax(X) = {(X,Mi) | 1 ≤ i ≤ n}.
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Proof. Since X is a finite BCI-algebra, by Corollary 2.20, (Mi)X = Mi for all
maximal ideal Mi of X and so (X,Mi) is the unique maximal θ-pair of Mi, by
Corollary 4.11. Hence θmax(X) = {(X,Mi) | 1 ≤ i ≤ n}, as required.

As an application of Theorem 3.17, the following result states the useful prop-
erties of finite BCI-algebras.

Theorem 4.15. Let X be a finite BCI-algebra. Then following statements are
holds:

(i) For each M ⋖X and all maximal ideal θ-pair (A,B) for M , CX/B(A/B) ̸= 0.

(ii) For each M ⋖X there exists a maximal ideal θ-pair (A,B) for M such that
X = A+M , A ∩MX = B and A/B is commutative.

(iii) For each M ⋖X, there exists a maximal ideal θ-pair (A,B) for M such that
X = A+M and A/B is nilpotent.

Proof. (i) LetM⋖X and (A,B) be a maximal ideal θ-pair forM . By Lemma 4.8(ii),
there exists a maximal ideal θ-pair (C,D) for M such that A/B ∼= C/D. Now, by
assumption, Theorem 3.17 and Lemma 3.13, C/D is a solvable ideal of X/D and
consequently (C/D)(1) is a closed ideal of X/D which is contained properly in C/D.
So, (C/D)(1) = 0 because (C,D) ∈ θmax(M), which implies that C/D and then
A/B are commutative algebras. It follows that A/B ⊆ CX/B(A/B), showing that
CX/B(A/B) ̸= 0.

(ii) Since X is a solvable BCI-algebra, by Theorem 3.16, it has a series X =
X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn = 0 of closed ideals in X such that Xk−1/Xk is a
commutative minimal ideal of X/Xk for k = 1, ..., n. Now let M be a maximal ideal
of X and there exists i ∈ N such that Xi ⊆ M but Xi−1 ⊈ M . We observe that
(Xi−1, Xi) ∈ θ(M). Then Xi−1 +M = X and Xi−1 ∩MX = Xi. If (Xi−1, Xi) ∈
θmax(M), then as Xi−1/Xi is commutative, the result holds; otherwise, by Lemma
4.8(ii), we choose an ideal θ-pair (C,D) ∈ θmax(M) such that (Xi−1, Xi) ≤ (C,D)
and C/D ∼= Xi−1/Xi. It follows that C/D is commutative. Obviously, C+M = X
and C ∩MX = D, as desired.

(iii) Follows from (ii).

Corollary 4.16. Let X be a nilpotent BCI-algebra. Then for any M ⋖ X and
each maximal ideal θ-pair (A,B) for M , Z(X/B) ̸= 0.

Proof. Since X is nilpotent, the proof follows at once from Lemma 3.8 and Theorem
3.10.

Theorem 4.17. Let X be a nilpotent BCI-algebra. Then for any M ⋖X, there
exists a maximal closed ideal θ-pair (A,B) for M such that A/B ⊆ Z(X/B).
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Proof. Let M be an arbitrary maximal ideal of X. If X/MX has no proper closed
ideal, then obviously (X,MX) is a maximal closed ideal θ-pair for M such that
X/MX = Z(X/MX). In the contrary case, X/MX contains a minimal closed ideal
N/MX such that (N,MX) is a maximal closed ideal θ-pair for M . Now, using
the assumption and Theorem 3.10, (N/MX) ∩ Z(X/MX) ̸= 0 and consequently
N/MX ⊆ Z(X/MX), as required.

In the following theorem, we give a necessary and sufficient condition on a fixed
BCI-algebra X such that X to be nilpotent algebra.

Theorem 4.18. Let X be a BCI-algebra. Then following statements are equiva-
lent:

(i) X is nilpotent.

(ii) For any closed maximal ideal M of X, M is a commutative nilpotent ideal of
X.

Proof. (i)⇒(ii) Let M be any closed maximal ideal of X. Hence M is a nilpotent
ideal. Since MX = M , by Corollary 4.11, |θmax(M)| = 1 and (X,M) is the unique
maximal θ-pair of M . First, we assume that M is minimal. Then by Corollary
3.11, M ⊆ Z(X). Now if Z(X) = X, then X is nilpotent of class 1 and so M is
commutative, by Corollary 3.7. Moreover, if Z(X) = M , then by Theorem 4.17,
X/M ⊆ Z(X/M) and so

X/Z(X) = X/M = Z(X/M) = Z(X/Z(X)).

Thus X/Z(X) is of class 1 and so it is commutative. It follows that X(1) ⊆ Z(X) by
Theorem 2.8, and M = Z(X) is a commutative ideal of X, as desired. Next, let M
contains a minimal closed ideal N of X. Since (X,M) ∈ θmax(M), by Lemma 4.8
and Corollary 4.13, we deduced that (X/N,M/N) is the unique maximal θ-pair of
M/N . Thus (X/N)/(M/N) ⊆ Z((X/N)/(M/N)) by Theorem 4.17, and it follows
that X/M is commutative BCI-algebra by Theorem 3.6. Now M is commutative
ideal, by Theorem 2.6.

(ii)⇒(i) Since M is a commutative closed ideal of X, it follows that X/M is a
commutative BCI-algebra, and so X/M is nilpotent. Now the result follows from
Theorem 3.9.
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