
KYUNGPOOK Math. J. 64(2024), 287-301

https://doi.org/10.5666/KMJ.2024.64.2.287

pISSN 1225-6951 eISSN 0454-8124

© Kyungpook Mathematical Journal

Distribution of Runs and Patterns in Four State Trials

Jungtaek Oh
Department of Biomedical Science, School of Medicine, Kyungpook National Uni-
versity, Daegue, 41566, Republic of Korea
Clinical Omics Center, School of Medicine, Kyungpook National University, Daegue,
41566, Republic of Korea
The Institute of Industrial Technology, Changwon National University, Changwon,
51140, Republic of Korea
e-mail : jungtaekoh0191@gmail.com and mathguide@nate.com

Abstract. From the mathematical and statistical point of view, a segment of a DNA

strand can be viewed as a sequence of four-state (A, C, G, T) trials. Herein, we consider

the distributions of runs and patterns related to the run lengths of multi-state sequences,

especially for four states (A, B, C, D). Let X1, X2, . . . be a sequence of four state inde-

pendent and identically distributed trials taking values in the set S = {A, B, C, D}.
In this study, we obtain exact formulas for the probability distribution function for the

discrete distribution of runs of B’s of order k. We obtain longest run statistics, shortest

run statistics, and determine the distributions of waiting times and run lengths.

1. Introduction

Runs and run related statistics have been extensively studied in literature due to
their wide range of applications in various areas including statistics (e.g., hypothesis
testing), engineering (e.g., system reliability, health services monitoring, and qual-
ity control), molecular biology and bioinformatics (e.g., population genetics, and
DNA sequence homology), physics, psychology, radar astronomy, computer science
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(e.g., encoding/decoding and transmission of digital information), and finance (e.g.,
financial engineering, risk analysis, and prediction). The significant progress made
in runs and related statistics during the previous few decades was been nicely sur-
veyed in [6] as well as in [14] and the references therein. More recent contributions
are exemplified by such papers as [5], [12], [17], [20], and [2].

There are two main types of problems concerning runs and related statistics.

(1) The number of trials until the first occurrence of a run or pattern (or until the
r-th occurrence of a run or pattern), which is called a waiting time problem.

(2) The number of occurrences of a run or pattern until the n-th trial.

Waiting time distributions have attracted a lot of interest in applied probability.
Consequently, the properties of waiting time distributions have been extensively
studied [10], [1], [7], [18], [4], [3], [16], [15].

The geometric distribution of order k is one of the best known waiting time
distributions. It is defined as the distribution of the number of trials until obtaining
the first consecutive k successes. This definition is due to [24]. It is clear that the
geometric distribution of order k reduces to the classical geometric distribution for
the case k = 1 with probability mass function (PMF) f(x) = qx−1p (x ≥ 1) (the
number of Bernoulli trials needed to get one success).

Let X1, X2, . . . be a sequence of four state independent and identically dis-
tributed (IID) trials taking values from a set S = {A, B, C, D} of four symbols.
For the number of trials W k

1 until the first consecutive k successes we have the
following equivalent definitions of W k

1 .

W k
1 = min{n : Xn−k+1 = · · · = Xn = 1}

= min

{
n :

n∏
n−k+1

Xj = 1

}

= min

{
n :

n∑
n−k+1

Xj = k

}
.

Various statistical properties of the geometric distribution of order k have been
applied to multiple areas, ranging from quality control to reliability. In particular,
the consecutive-k-out-of-n:F system (refer to [9], [8], [19], [11], [27]) is very closely
related to this distribution. Another closely related random variable is the length
Ln of the longest success run in n four state trials, as shown above. BecauseW k

1 ≤ n
if and only if Ln ≥ k, there is a relationship between the probability distribution
functions of W k

1 and Ln given by the identity P(W k
1 ≤ n) = P(Ln ≥ k).

Let X1, X2, . . . , Xn be independent random variables distributed identically as
W k

1 . The distribution of the number W k
r of trials until the r-th appearance of a

success run of length k is a negative binomial distribution of order k. This follows
from the fact that it is the distribution of the r-fold convolution of the geometric



Distribution of Runs and Patterns in Four State Trials 289

distribution of order k, namely

W k
r =

r∑
i=1

Xi.

Some main aspects of occurrences of runs and patterns are: where, when and how
many times they occur. To study these, one defines statistics that count runs and
patterns according to various enumerating schemes. A classical counting scheme for
enumerating runs of fixed length was presented in[13]. Once k consecutive successes
are observed, the number of occurrences of k consecutive successes increases and
counting procedure starts anew. This is referred to as a non-overlapping counting
scheme. It follows a binomial distribution of order k. In another counting scheme,
we count only the number Ek

n of the success runs of a length exactly k, preceded
and succeeded either by failures or by nothing ([21]).

In a sequence of n four state trials, we can define other statistics via runs
and patterns, such as the longest (maximal) run length and shortest (minimal)
run length (refer to [26]). It is obvious that the longest run and shortest run are,
respectively, upper and lower bounds of the number of consecutive successes that
appears in a sequence of n four state trials. These distributions can be applied in
DNA type sequence comparison by observing the frequencies of the longest runs of
matches or mismatches.

Sequences of categorical outcomes arise frequently in biomedical research, rep-
resenting, for example, deoxyribonucleic acid (DNA) strand segments or findings of
health care evaluations. They are typically analyzed by defining problem-specific
statistics involving runs and patterns. A molecule of deoxyribonucleic acid is a chain
or sequence of pairs of nucleotides with the four base structures adenine, cytosine,
guanine, and thymine, or A, C, G, and T. The occurrence of a specified sequence
of nucleotides in some portion of the chain is the event that the specified run of
A’s, C’s, G’s, and T’s occurs. Mathematically, a random DNA strand segment can
be viewed as a sequence of four-state (A, C, G, T) trials. We consider some distri-
butions of runs and patterns related to run lengths for multi-state, especially four
state trials.

For a sequence X1, X2, . . . , Xn of IID trials with values taken from a set of
symbols S = {A, B, C, D} with probabilities P (A) = Pa, P (B) = Pb, P (C) = Pc

and P (D) = Pd, such that Pa+Pb+Pc+Pd = 1, we consider the following stochastic
variables.

• Let Nk
n denotes the number of the non-overlapping runs of B’s of order k in

n independent trials,

• Let Ek
n denotes the number of the runs of B’s of exact length k, preceded and

succeeded by A or C or D or nothing,

• Let W k
1 denotes the waiting time for the first occurrence of a run of B’s of

length k,
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• Let W k
r denotes the waiting time for the r-th occurrence of run of B’s of

length k,

• Let Ln denotes the maximum length of a run of B’s (longest run statistics),

• Let Mn denotes the minimum length of a run of B’s (shortest run statistics),

• Let NLn denotes the number of times a non-overlapping run of length Ln

appears,

• Let NMn denotes the number of times a non-overlapping run of length Mn

appears.

To illustrate the above mentioned quantities, we consider the runs of B’s in the
following example for n = 40.

DAAABBBBBCAABBBCCADBBBBCCDABBBBBBCACCDBB,

for which one can check N2
40 = 9, N3

40 = 5, L40 = 6, M40 = 2, E2
40 = 1, E3

40 = 1,
E4

40 = 1, E5
40 = 1, E6

40 = 1, NL40 = 1 and NM40 = 1.
In this study, we are obtain probability distribution functions for runs and

patterns in four state IID trials in terms of multinomial coefficients. The exact
PMFs are derived via combinatorial analysis. In Section 2, we obtain the PMF of
a binomial distribution of order k and distribution of runs of a length exactly k. In
Section 3, we obtain PMFs of a geometric distribution of order k and a negative
binomial distribution of order k. In Section 4, we obtain the PMFs for longest and
shortest runs.

2. Discrete Dstribution of Order k

We consider a sequence X1, X2, . . . , Xn of multistate trials defined on the state
space S = {A, B, C, D} with probabilities P (A) = Pa, P (B) = Pb, P (C) = Pc

and P (D) = Pd, such that Pa + Pb + Pc + Pd = 1. In this section, we obtain the
PMFs of a binomial distribution of order k, and the distribution of runs of length
exactly k using combinatorial analysis.

2.1. Binomial Distribution of Order k

First, we consider the number Nk
n of runs of B’s of length k in n IID four

state trials. We establish the PMF of the random variable Nk
n using combinatorial

analysis.

Theorem 2.1. The PMF of Nk
n , for 0 ≤ x ≤

[
n
k

]
, is given by

P (Nk
n = x) = Pn

b

k−1∑
i=0

∑
⋆i

( ∑k
t=1(xt + yt + zt) + x

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, x

)(
Pa

Pb

)∑k
t=1 xt

×
(
Pc

Pb

)∑k
t=1 yt

(
Pd

Pb

)∑k
t=1 zt

,
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where the inner summation
∑

⋆ is over all nonnegative integers x1, . . . , xk, y1, . . . ,

yk, z1, . . . , zk for which
∑k

t=1 t(xt + yt + zt) + kx+ i = n, for i = 0, 1, . . . , k − 1.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, where 1 ≤ t ≤ k. A

typical element of the event
{
Nk

n = x
}
is a sequence

· · · Rt · · ·
1

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·
2

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·
x

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·B . . . B︸ ︷︷ ︸
i

,

where i ∈ {0, . . . , k − 1}, and Rt represents any combination of the strings Ot, Jt,
and Tt appearing altogether xt, yt, and zt times, respectively, in the sequence,
satisfying

k∑
t=1

t(xt + yt + zt) + kx+ i = n.

The number of different ways of arranging this sequence equals

(∑k
t=1 xt +

∑k
t=1 yt +

∑k
t=1 zt + x

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, x

)
.

Because of the independence of the trials, the probability of the above sequence is

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)+kx

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

The probability of the run of B’s of length i at the end of each of these sequences
is P i

b (0 ≤ i < k), which leads to the overall probability

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)+kx+i

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

Summing over i = 0, 1, . . . , k − 1 the result follows. 2

Remark 1. For Pa = q, Pb = p such that p + q = 1, Pc = Pd = 0 and
y1, . . . , yk, z1, . . . , zk = 0, Theorem 2.1 reduces to Theorem 2.1 of [25].

2.2. Distributions of Runs of Length Exactly k

In this subsection we consider the number Ek
n of runs of B’s of length k in

n IID four state trials. We establish the PMF of the random variable Ek
n using

combinatorial analysis.
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Theorem 2.2. The PMF of Ek
n, for 0 ≤ x ≤

[
n+1
k+1

]
, is given by

P (Ek
n = x) =

Pn
b

n−x(k+1)∑
i=0

∑
⋆(k,i)

[( ∑n−x(k+1)
t=1 xt +

∑n−x(k+1)
t=1 yt +

∑n−x(k+1)
t=1 zt

x1, . . . , xn−x(k+1), y1, . . . , yn−x(k+1), z1, . . . , zn−x(k+1)

)

×
(
Pa

Pb

)∑n−x(k+1)
t=1 xt

(
Pc

Pb

)∑n−x(k+1)
t=1 yt

(
Pb

Pd

)∑n−x(k+1)
t=1 zt]

,

where the inner summation
∑

⋆(k,i) is over all nonnegative integers x1, . . .,

xn−x(k+1), y1, . . ., yn−x(k+1), z1, . . ., zn−x(k+1) for which
∑n−x(k+1)

t=1 t(xt+yt+zt) =
n− i and

xk+1 + yk+1 + zk+1 =

{
x if i ̸= k,
x− 1 if i = k.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, for t = 1, 2, . . . , n−

x(k + 1). A typical element of the event
{
Ek

n = x
}
is a sequence

· · · Rt · · ·
1

Ok+1 or Jk+1 or Tk+1 · · · Rt · · ·
x

Ok+1 or Jk+1 or Tk+1 · · · Rt · · · B . . . B︸ ︷︷ ︸
i

,

where 0 ≤ i ≤ n−x(k+1), and Rt represents any string Ot, Jt, and Tt appearing
xt, yt, and zt times, respectively, in the sequence, satisfying

n−x(k+1)∑
t=1

t(xt + yt + zt) = n− i,

subject to the condition xk+1 + yk+1 + zk+1 =

{
x if i ̸= k,
x− 1 if i = k.

The number of

different ways of arranging the sequence equals(
x1 + · · ·+ xn−x(k+1) + y1 + · · ·+ yn−x(k+1) + z1 + · · ·+ zn−x(k+1)

x1, . . . , xn−x(k+1), y1, . . . , yn−x(k+1), z1, . . . , zn−x(k+1)

)
.

Because of the independence of the trials, the sequence has probability

P
x1+···+xn−x(k+1)
a P

y1+···+yn−x(k+1)
c P

z1+···+zn−x(k+1)

d

× P
(x2+y2+z2)+2(x3+y3+z3)+···+{n−x(k+1)−1}(xn−x(k+1)+yn−x(k+1)+zn−x(k+1))

b .
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The probability of the run of B’s of length i ∈ {0, 1, . . . , n− x(k+1)} at the end of
each of these sequences is P i

b , which leads to the overall probability

P
x1+···+xn−x(k+1)
a P

y1+···+yn−x(k+1)
c P

z1+···+zn−x(k+1)

d

× P
(x2+y2+z2)+2(x3+y3+z3)+···+{n−x(k+1)−1}(xn−x(k+1)+yn−x(k+1)+zn−x(k+1))+i

b .

Summing over i = 0, 1, . . . , n− x(k + 1), the result follows. 2

3. Waiting Time Distributions

We consider a sequence X1, X2, . . . of multistate trials defined on the state
space S = {A, B, C, D} with probabilities P (A) = Pa, P (B) = Pb, P (C) = Pc,
and P (D) = Pd, such that Pa + Pb + Pc + Pd = 1. In this section, we obtain PMFs
for the geometric distribution of order k and the negative binomial distribution of
order k, by employing combinatorial analysis.

3.1. Geometric Distribution of Order k

First, we consider the waiting time W k
1 for the first occurrence of a run of B’s

of length k. We establish the PMF of the random variable W k
1 using combinatorial

analysis.

Theorem 3.1. The PMF of W k
1 is given by

P (W k
1 = n) =

Pn
b

∑
⋆

k∑
t=1

(
(xt + yt + zt)

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk

)(
Pa

Pb

)∑k
t=1 xt

(
Pc

Pb

)∑k
t=1 yt

(
Pd

Pb

)∑k
t=1 zt

,

where the outer summation
∑

⋆ is over all nonnegative integers x1, . . . , xk, y1,

. . . , yk, z1, . . . , zk for which
∑k

t=1 t(xt + yt + zt) = n− k.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, t = 1, . . . , k. A

typical element of the event
{
W k

1 = x
}
is a sequence

· · · · · · · · · · · · Rt · · · · · · · · · · · · B . . . B︸ ︷︷ ︸
k

,

where Rt represents any string Ot, Jt, and Tt appearing xt, yt, and zt times,

respectively, in the sequence, satisfying
∑k

t=1 t(xt + yt + zt) = n− k. The number
of different ways of arranging the sequence equals( ∑k

t=1(xt + yt + zt)

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk

)
.
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Because of the independence of the trials, the probability of the sequence is

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

The probability of the run of B’s of length k at the end of each these sequences is
P k
b , which leads to the overall probability

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)+k

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

2

Remark 2. For Pa = q, Pb = p such that p + q = 1, Pc = Pd = 0 and
y1, . . . , yk, z1, . . . , zk = 0, Theorem 3.1 reduces to Theorem 3.1 of [23].

3.2. Negative Binomial Distribution of Order k

Let W k
r be the random variable denoting the waiting time for the r-th occur-

rence of a run of B’s of length k. We establish the PMF of random variables W k
r

using combinatorial analysis.

Theorem 3.2. The PMF of W k
r in n four state IID trials is given by

P (W k
r = n) = Pn

b

∑
⋆

k∑
t=1

(
(xt + yt + zt) + r − 1

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, r − 1

)

×
(
Pa

Pb

)∑k
t=1 xt

(
Pc

Pb

)∑k
t=1 yt

(
Pd

Pb

)∑k
t=1 zt

,

where the outer summation
∑

⋆ is over all nonnegative integers x1, . . . , xk, y1, . . . , yk,

z1, . . . , zk for which
∑k

t=1 t(xt + yt + zt) + kr = n.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, t = 1, . . . , k. A

typical element of the event
{
W k

r = x
}
is a sequence

· · · Rt · · ·
1

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·
2

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·
r−1

B . . . B︸ ︷︷ ︸
k

· · · Rt · · ·
r

B . . . B︸ ︷︷ ︸
k

,

where Rt represents any string Ot, Jt, and Tt appearing xt, yt, and zt times,

respectively, in the sequence, satisfying
∑k

t=1 t(xt + yt + zt) + kr = n. The number
of different ways of arranging the sequence equals( ∑k

t=1(xt + yt + zt) + r − 1

x1, . . . , xk, y1, . . . , yk, z1, . . . , zk, r − 1

)
.
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Because of the independence of the trials, the probability of the sequence is

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)+k(r−1)

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

The probability of the run of B’s of length k at the end of each of these sequences
is P k

b , which leads to the overall probability

P
∑k

t=1 xt
a P

∑k
t=1(t−1)(xt+yt+zt)+kr

b P
∑k

t=1 yt
c P

∑k
t=1 zt

d .

2

Remark 3. For Pa = q, Pb = p such that p + q = 1, Pc = Pd = 0 and
y1, . . . , yk, z1, . . . , zk = 0, Theorem 3.2 reduces to Theorem 3.1 (a) of [22].

4. Distributions of Run Lengths

We consider a sequence X1, X2, . . . , Xn of multistate trials defined on the state
space S = {A, B, C, D} with probabilities P (A) = Pa, P (B) = Pb, P (C) = Pc

and P (D) = Pd, such that Pa + Pb + Pc + Pd = 1. In this section, we obtain the
PMFs of the distribuions of the longest and shortest runs and establish the PMFs
and their joint distributions using combinatorial analysis.

4.1. Distribution of Tehe Longest Run Length

Let Ln be the maximum length of a run of B’s in n four state IID trials, which
is called longest run statistics. We establish the PMF of the random variable Ln

using combinatorial analysis.

Theorem 4.1. The PMF of Ln is given by

P (Ln = ℓ) = Pn
b

ℓ∑
i=0

∑
⋆

( ∑ℓ+1
t=1(xt + yt + zt)

x1, . . . , xℓ+1, y1, . . . , yℓ+1, z1, . . . , zℓ+1

)(
Pa

Pb

)∑ℓ+1
t=1 xt

×
(
Pc

Pb

)∑ℓ+1
t=1 yt

(
Pd

Pb

)∑ℓ+1
t=1 zt

,

where the inner summation
∑

⋆ is over all nonnegative integers x1, . . . , xℓ+1,

y1, . . . , yℓ+1, z1, . . . , zℓ+1 such that
∑ℓ+1

t=1 t(xt + yt + zt) = n − i, for 0 ≤ i ≤ ℓ,
and satisfying at least one of the conditions xℓ+1 ≥ 1, yℓ+1 ≥ 1, zℓ+1 ≥ 1, and
i = ℓ.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, where t = 1, . . . ,

min(ℓ+ 1, n). A typical element of the event {Ln = ℓ} is a sequence

· · · Rt · · ·B · · ·B︸ ︷︷ ︸
i

,
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where Rt represents any of the strings Ot, Jt, and Tt appearing xt, yt, and zt times,

respectively, in the sequence, satisfying
∑ℓ+1

t=1 t(xt + yt + zt) = n− i, for 0 ≤ i ≤ ℓ,
and satisfying at least one of the conditions: xℓ+1 ≥ 1, yℓ+1 ≥ 1, zℓ+1 ≥ 1, and
i = ℓ. The number of different ways of arranging the sequence equals( ∑ℓ+1

t=1(xt + yt + zt)

x1, . . . , xℓ+1, y1, . . . , yℓ+1, z1, . . . , zℓ+1

)
.

Because of the independence of the trials, the probability of the above sequence is

P
∑ℓ+1

t=1 xt
a P

∑ℓ+1
t=1(t−1)(xt+yt+zt)

b P
∑ℓ+1

t=1 yt
c P

∑ℓ+1
t=1 zt

d .

The probability of the run of B’s of length i (0 ≤ i ≤ ℓ) at the end of each of these
sequences is P i

b , which leads to the overall probability

P
∑ℓ+1

t=1 xt
a P

∑ℓ+1
t=1(t−1)(xt+yt+zt)+i

b P
∑ℓ+1

t=1 yt
c P

∑ℓ+1
t=1 zt

d .

Summing over i = 0, 1, . . . , ℓ the result follows. 2

4.2. Joint Distributions of Maximum Length and Number of Times

Let Ln denote the maximum length of runs of B’s and NLn the number of times
a run of length Ln appears in a sequence of size n. We establish the joint PMF of
the random variables Ln and NLn using combinatorial analysis.

Theorem 4.2. The joint PMF of Ln and NLn is given by

P (Ln = ℓ ∧NLn = x) =

Pn
b

ℓ∑
i=0

∑
⋆

[(
x1 + · · ·+ xℓ+1 + y1 + · · ·+ yℓ+1 + z1 + · · ·+ zℓ+1

x1, . . . , xℓ+1, y1, . . . , yℓ+1, z1, . . . , zℓ+1

)

×
(
Pa

Pb

)x1+···+xℓ+1
(
Pc

Pb

)y1+···+yℓ+1
(
Pd

Pb

)z1+···+zℓ+1
]
,

where the inner summation
∑

⋆ is over all nonnegative integers x1, . . . , xℓ+1, y1, . . . ,

yℓ+1, z1, . . . , zℓ+1 for which
∑ℓ+1

t=1 t(xt + yt + zt) = n − i, and satisfying at least a
conditions 

xℓ+1 ≥ 1 or
yℓ+1 ≥ 1 or
zℓ+1 ≥ 1 or
i = ℓ and 0 ≤ i ≤ min(ℓ, n− x(ℓ+ 1)),

subject to

xℓ+1 + yℓ+1 + zℓ+1 =

{
x if i ̸= ℓ,
x− 1 if i = ℓ.
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Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, where 1 ≤ t ≤ ℓ+ 1.

A typical element of the event {Ln = ℓ ∧NLn = x} is a sequence

· · · Rt · · ·
1

Oℓ+1 or Jℓ+1 or Tℓ+1 · · · Rt · · ·
x

Oℓ+1 or Jℓ+1 or Tℓ+1 · · · Rt · · · B · · ·B︸ ︷︷ ︸
i

,

where 0 ≤ i ≤ min(ℓ, n − x(ℓ + 1)), and Rt represents any string Ot, Jt, and Tt

appearing xt, yt, and zt times, respectively, in the sequence, satisfying

ℓ+1∑
t=1

t(xt + yt + zt) = n− i,

subject to the condition xℓ+1 + yℓ+1 + zℓ+1 =

{
x if i ̸= ℓ,
x− 1 if i = ℓ.

The number of

different ways of arranging the sequence equals(
x1 + · · ·+ xℓ+1 + y1 + · · ·+ yℓ+1 + z1 + · · ·+ zℓ+1

x1, . . . , xℓ+1, y1, . . . , yℓ+1, z1, . . . , zℓ+1

)
.

Because of the independence of the trials, the probability of the above sequence is

P x1+···+xℓ+1
a P y1+···+yℓ+1

c P
z1+···+zℓ+1

d P
(x2+y2+z2)+2(x3+y3+z3)+···+l(xℓ+1+yℓ+1+zℓ+1)
b .

The probability of the run of B’s of length i for 0 ≤ i ≤ n− x(ℓ+ 1)) at the end of
each of these sequences is P i

b , which leads to the overall probability.

P x1+···+xℓ+1
a P y1+···+yℓ+1

c P
z1+···+zℓ+1

d P
(x2+y2+z2)+2(x3+y3+z3)+···+ℓ(xℓ+1+yℓ+1+zℓ+1)+i
b .

Summing over i = 0, 1, . . . , n− x(ℓ+ 1) the results follows. 2

4.3. Distribution of The Smallest Run Length

Let Mn denote the minimum length of a run of B’s in n IID four state trials.
We establish the PMF of the random variable Mn using combinatorial analysis.

Theorem 4.3. The PMF of Mn, for 0 ≤ s ≤ n, is given by

P (Mn = s) =∑
i

∑
⋆

[(
x1 + xs+1 + · · ·+ xn + y1 + ys+1 + · · ·+ yn + z1 + zs+1 + · · ·+ zn

x1, xs+1, . . . , xn, y1, ys+1, . . . , yn, z1, zs+1, . . . , zn

)

×
(
Pa

Pb

)x1+xs+1+···+xn−s
(
Pc

Pb

)y1+ys+1+···+yn−s
(
Pd

Pb

)z1+zs+1+···+zn−s
]
,
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where the summation
∑

⋆ is over all nonnegative integers x1, xs+1, . . . , xn, y1,
ys+1, . . . , yn, z1, zs+1, . . . , zn such that (x1+ y1+ z1)+ (s+1)(xs+1+ ys+1+ zs+1)+
· · ·+ n(xn + yn + zn) = n− i, where i ∈ {0, s, s+ 1, . . . , n}, satisfying at least one
of the conditions: xs+1 ≥ 1, ys+1 ≥ 1, zs+1 ≥ 1, and i = s.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, where t =

1, s+ 1, . . . , n. A typical element of the event {Mn = s} is a sequence

· · · Rt · · ·B · · ·B︸ ︷︷ ︸
i

,

where Rt represents any of the strings Ot, Jt, and Tt appearing xt, yt, and zt
times, respectively, in the sequence, satisfying (x1+y1+ z1)+(s+1)(xs+1+ys+1+
zs+1) + · · ·+ n(xn + yn + zn) = n− i, for i ∈ {0, s, s+ 1, . . . , n}, and satisfying at
least one of the conditions: xs+1 ≥ 1, ys+1 ≥ 1, zs+1 ≥ 1, and i = s. The number
of different ways of arranging the sequence equals(

x1 + xs+1 + · · ·+ xn + y1 + ys+1 + · · ·+ yn + z1 + zs+1 + · · ·+ zn
x1, xs+1, . . . , xn, y1, ys+1, . . . , yn, z1, zs+1, . . . , zn

)
.

By the independence of trials, the probability of the above sequence is given by

P x1+xs+1+···+xn−s
a P

s(xs+1+ys+1+zs+1)+(s+1)(xs+2+ys+2+zs+2)+···+(n−1)(xn+yn+zn)
b

× P y1+ys+1+···+yn−s
c P

z1+zs+1+···+zn−s

d .

The probability of a run of B’s of length i ∈ {0, s, s + 1, . . . , n} at the end of each
of these sequences is P i

b , which leads to the overall probability

P x1+xs+1+···+xn−s
a P

s(xs+1+ys+1+zs+1)+(s+1)(xs+2+ys+2+zs+2)+···+(n−1)(xn+yn+zn)+i
b

× P y1+ys+1+···+yn−s
c P

z1+zs+1+···+zn−s

d .

Summing over i = 0, s, s+ 1, . . . , n the result follows. 2

4.4. Joint Distributions of Minimum Length and Number of Times

Let Mn denote the minimum length of a run of B’s and NMn be the number
of times a run of length Mn appears in a sequence of size n. We establish the joint
PMF of the random variables Mn and NMn using combinatorial analysis.

Theorem 4.4. The joint PMF of Mn and NMn, for 0 ≤ s ≤ n, 0 ≤ x ≤
[
n+1
s+1

]
,

is given by

P (Mn = s ∧NMn = x) =

Pn
b

l∑
i=0

∑
⋆

(
x1 + xs+1 + · · ·+ xn + y1 + ys+1 + · · ·+ yn + z1 + zs+1 + · · ·+ zn

x1, xs+1, . . . , xn, y1, ys+1, . . . , yn, z1, zs+1, . . . , zn

)
×
(Pa

Pb

)x1+xs+1+···+xn
(Pc

Pb

)y1+ys+1+···+yn
(Pb

Pd

)z1+zs+1+···+zn
,
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where the inner summation
∑

⋆ is over all nonnegative integers x1, xs+1, . . . , xn, y1,
ys+1, . . . , yn, z1, zs+1, . . . , zn for which (x1+y1+ z1)+(s+1)(xs+1+ys+1+ zs+1)+
· · ·+ n(xn + yn + zn) = n− i, for i ∈ {0, s, s+ 1, . . . , n− x(s+ 1)}, while satisfying
at least one of the conditions: xs+1 ≥ 1, ys+1 ≥ 1, zs+1 ≥ 1, and i = s, and subject

to xs+1 + ys+1 + zs+1 =

{
x if i ̸= s,
x− 1 if i = s.

Proof. Let B · · ·B︸ ︷︷ ︸
t−1

A = Ot, B · · ·B︸ ︷︷ ︸
t−1

C = Jt, and B · · ·B︸ ︷︷ ︸
t−1

D = Tt, where s+1 ≤ t ≤ n.

A typical element of the event {Mn = s ∧NMn = x} is a sequence

· · · Rt · · ·
1

Os+1 or Js+1 or Ts+1 · · · Rt · · ·
x

Os+1 or Js+1 or Ts+1 · · · Rt · · · B · · ·B︸ ︷︷ ︸
i

,

where i ∈ {0, s, s+ 1, . . . , n− x(s+ 1)}, and Rt represents any string Ot, Jt, and
Tt, appearing xt, yt and zt times, respectively, in the sequence, satisfying

(x1 + y1 + z1) + (s+ 1)(xs+1 + ys+1 + zs+1) + · · ·+ n(xn + yn + zn) = n− i,

subject to the condition xs+1 + ys+1 + zs+1 =

{
x if i ̸= s,
x− 1 if i = s.

The number of

different ways of arranging the sequence equals(
x1 + xs+1 + · · ·+ xn + y1 + ys+1 + · · ·+ yn + z1 + zs+1 + · · ·+ zn

x1, xs+1, . . . , xn, y1, ys+1, . . . , yn, z1, zs+1, . . . , zn

)
.

By the independence of trials, the probability of the above sequence is given by

P x1+xs+1+···+xn
a P y1+ys+1+···+yn

c P
z1+zs+1+···+zn
d

× P
s(xs+1+ys+1+zs+1)+···+(n−1)(xn+yn+zn)
b .

The probability of the run of B’s of length i ∈ {0, s, s+1, . . . , n} at the end of each
of these sequences is P i

b , which leads to the overall probability

P x1+xs+1+···+xn
a P y1+ys+1+···+yn

c P
z1+zs+1+···+zn
d

× P
s(xs+1+ys+1+zs+1)+···+(n−1)(xn+yn+zn)+i
b .

Summing over i = 0, s, s+ 1, . . . , n the result follows. 2
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