DOI QR코드

DOI QR Code

On The Sets of f-Strongly Cesàro Summable Sequences

  • Ibrahim Sulaiman Ibrahim (University of Zakho, College of Education, Department of Mathematics) ;
  • Rifat Colak (Firat University, Faculty of Science, Department of Mathematics)
  • 투고 : 2023.08.15
  • 심사 : 2024.01.20
  • 발행 : 2024.06.30

초록

In this paper, we establish relations between the sets of strongly Cesàro summable sequences of complex numbers for modulus functions f and g satisfying various conditions. Furthermore, for some special modulus functions, we obtain relations between the sets of strongly Cesàro summable and statistically convergent sequences of complex numbers.

키워드

참고문헌

  1. A. Aizpuru, M. Listan-Garcia, and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37(4)(2014), 525-530. https://doi.org/10.2989/16073606.2014.981683
  2. Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math, 31(2)(2005), 233-243.
  3. V. K. Bhardwaj and S. Dhawan, f-Statistical convergence of order α and strong Cesaro summability of order α with respect to a modulus, J. Inequal. Appl., 67(4)(2015), 1-14. https://doi.org/10.1186/s13660-015-0850-x
  4. V. K. Bhardwaj, S. Dhawan, and S. Gupta, Density by moduli and statistical boundedness, Abstr. Appl. Anal., 2016(2016), 1-6.
  5. B. Bilalov and T. Nazarova, On statistical convergence in metric spaces, J. Math. Res., 7(1)(2015), 37-43. https://doi.org/10.5539/jmr.v1n1p37
  6. J. Connor, The statistical and strong p-cesaro convergence of sequences, Analysis, 8(1-2)(1988), 47-64. https://doi.org/10.1524/anly.1988.8.12.47
  7. J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2)(1989), 194-198. https://doi.org/10.4153/CMB-1989-029-3
  8. R. C olak and E. Kayan, df-Statistical convergence of order α and df-strong Cesaro summability of order α in accordance to a modulus in metric spaces, Thai J. Math., 20(2)(2022), 861-875.
  9. O. Duman, Generalized Cesaro summability of fourier series and its applications, Constr. Math. Anal., 4(2)(2021), 135-144. https://doi.org/10.33205/cma.838606
  10. M. Et and H. Sengul, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28(8)(2014), 1593-1602. https://doi.org/10.2298/FIL1408593E
  11. M. Et, On some generalized deferred Cesaro means of order β, Math. Method. Appl. Sci., 44(9)(2021), 7433-7441. https://doi.org/10.1002/mma.6243
  12. H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4)(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  13. J. A. Fridy, On statistical convergence, Analysis, 5(4)(1985), 301-314. https://doi.org/10.1524/anly.1985.5.4.301
  14. D. Ghosh and P. Srivastava, On some vector valued sequence space using orlicz function, Glas. Mat. Ser. III, 34(2)(1999), 253-261.
  15. C. Granados and A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst., 42(2021), 333-344.
  16. I. S. Ibrahim and R. Colak, On strong lacunary summability of order α with respect to modulus functions. An. Univ. Craiova Ser. Mat. Inform., 48(1)(2021), 127-136. https://doi.org/10.52846/ami.v48i1.1399
  17. E. Kamber, Intuitionistic fuzzy I-convergent difference sequence spaces defined by modulus function, J. Inequal. Spec. Funct, 10(1)(2019), 93-100. https://doi.org/10.1186/s13660-019-2152-1
  18. F. Leon-Saavedra, M. D. Listan-Garcia, and M. D. Romero de la Rosa, On statistical convergence and strong Cesaro convergence by moduli for double sequences, J. Inequal. Appl., 2022(1)(2022), 1-13. https://doi.org/10.1186/s13660-021-02735-3
  19. I. J. Maddox, Inclusions between FK spaces and kuttner's theorem, Math. Proc. Cambridge Philos. Soc., 101(3)(1987), 523-527. https://doi.org/10.1017/S0305004100066883
  20. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1)(1986), 161-166. https://doi.org/10.1017/S0305004100065968
  21. H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1)(1953), 29-49. https://doi.org/10.2969/jmsj/00510029
  22. D. Rath and B. Tripathy, On statistically convergent and statistically cauchy sequences, Indian J. Pure Appl. Math., 25(1994), 381-381.
  23. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(5)(1973), 973-978. https://doi.org/10.4153/CJM-1973-102-9
  24. B. Sarma, Some generalized sequence spaces operated by a modulus function, Invertis J. Sci. Tech., 11(1)(2018), 42-45. https://doi.org/10.5958/2454-762X.2018.00006.9
  25. I. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66(5)(1959), 361-375. https://doi.org/10.1080/00029890.1959.11989303
  26. H. M. Srivastava, B. B. Jena, and S. K. Paikray, Deferred cesaro statistical convergence of martingale sequence and korovkin-type approximation theorems, Miskolc Math. Notes, 23(1)(2022), 443-456. https://doi.org/10.18514/MMN.2022.3624
  27. T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2)(1980), 139-150.
  28. F. Weisz, Cesaro summability and Lebesgue points of higher dimensional Fourier series, Math. Found. Comput., 5(3)(2022), 241-257. https://doi.org/10.3934/mfc.2021033
  29. A. Zygmund, Trigonometric series, Cambridge University Press, 1959.