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ABSTRACT. In this paper, we study the generalized Fourier-Feynman transform (GFFT)
for functions on the general Wiener space C,,5[0,7]. We establish an explicit evaluation
formula for the analytic GFFT of bounded cylinder functions on C, 5[0, 7]. We start by ex-
amining certain cylinder functions which belong in a Banach algebra of bounded functions
on Cq[0,T]. We then obtain an explicit formula for the analytic GFFT of the bounded
cylinder functions.

1. Introduction

Let Cy[0,T] be the classical Wiener space. In [1], Cameron and Storvick in-
troduced a Banach algebra 8(L2[0,T]) of analytic Feynman integrable functions
on Cy[0,T]. Each function in 8§(L2[0,T]) is defined as a stochastic Fourier trans-
form of a complex measure on L3[0,T]. Cameron and Storvick showed that certain
functions which arise naturally in quantum mechanics are elements of the Banach
algebra 8(L3[0,T]). Under strengthened measurability assumptions, Cameron and
Storvick showed in [3] that the analytic Feynman integral of functions F' having the
form

(1.1) F(z) = exp{/OT 9(s,x(s))ds}

gives a solution of an integral equation formally equivalent to Schrodiner equation.
In (1.1), {6(s,-), s € [0,T]} is a family of the Fourier transforms of bounded mea-
sures on R. The functions given by equation (1.1) also are elements of the Banach
algebra 8(Lz[0,T1]), see [3, 4, 17].
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A study of the analytic Fourier-Feynman transform is an interesting topic con-
cerning with the analytic Feynman integral theory. The theory of the analytic
Fourier-Feynman transform suggested by Brue [1] now plays a noteworthy role in
infinite dimensional analysis.

In [9, 11], the authors used a generalized Brownian motion process (GBMP) to
define a generalized analytic Feynman integral and an L, (1 < p < 2) analytic GFFT
for functions on a function space C, [0, T]. The general Wiener space C, [0, T can
be understood as a space of continuous sample functions of the GBMP. We refer to
the references [9, 11, 19, 20] for more detailed informations about the definition of
the GBMP associated with continuous functions a(-) and b(-) on the time interval
[0,T], and the construction of the function space Cq[0,T]. Standard Brownian
motion is centered and stationary in time, while in general, a GBMP is neither
centered nor stationary in time.

In [9], the authors studied the L, analytic GFFT of cylinder functions on
Cop[0,T]. However, they provided the existences of only L; and L, GFFTs for
cylinder functions on C, [0, T] because the drift term a(t) of the GBMP makes
establishing the existences of the GFFTs very difficult. The purpose of this paper
is to study the cylinder functions on C, (0,7 whose L, analytic GFFT exists for
all p € [1,2]. For our purpose, we first examine certain cylinder functions which be-
long in a Banach algebra F(C,, [0, T]) of functions on the function space C, [0, 1.
The class F(Cq5[0,T]) used in this paper is homeomorhic to the Banach algebra
8(L ,10,T]) studied in [11]. We then provide an explicit formula for the GFFT of
the cylinder function under our consideration.

2. Definitions and Preliminaries

In this section we first provide a brief background about the general Wiener
space Cy [0, 7] induced by the GBMP.

Let (Cy,5[0,T], B(Cq5[0,T7]), 1) denote the function space induced by a GBMP
Y determined by continuous functions a(t) and b(t) where B(C, [0, T]) is the Borel
o-algebra induced by sup-norm, see [19] and [20, Chapters 3 and 4]. We assume
in this paper that a(t) is an absolutely continuous real-valued function on [0, T
with a(0) = 0, d’(t) € L2]0,T], and b(t) is an increasing, continuously differentiable
real-valued function with 5(0) = 0 and ¥/(t) > 0 for each ¢t € [0,7]. Then we can
consider the coordinate process X : [0,T] x C,[0,T] — R given by X (¢, z) = x(t)
which is the continuous realization of Y [20, Theorem 14.2]. For any ¢ € [0,T]
and x € Cy[0,T], we have X (t,z) = z(t) ~ N(a(t),b(t)). We then complete
this function space to obtain the measure space (Cq [0, T], W(Cy 5[0, T]), ) where
W(C,[0,T7]) is the set of all p-Carathéodory measurable subsets of C, [0, T].

A subset B of C, 5[0, T is said to be scale-invariant measurable (s.i.m.) provided
pB is W(C, [0, T])-measurable for all p > 0, and a s.i.m. set N is said to be a scale-
invariant null set provided pu(pN) = 0 for all p > 0. A property that holds except on
a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).
A function F is said to be s.i.m. provided F is defined on a s.i.m. set and F(p -)
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is W(Cy [0, T])-measurable for every p > 0. If two functions F' and G defined on
Cop]0,T] are equal s-a.e., then we write F =~ G.

Let L? ,[0,T] be the space of functions on [0, T which are Lebesgue measurable
and square integrable with respect to the Lebesgue—Stieltjes measures on [0, 7]
induced by a() and b(-): i.e.,

12,00.7] = {v : /OT P (B)db(t) < 0o and /OT 2 (H)dlal(t) < oo}

where |a|(-) is the total variation function of a(-). Then L2 ,[0,T] is a separable

Hilbert space with inner product defined by (u,v)qp = fOTu(t)v(t)d[b(t) + |al(1)].
For more details, see [9, 11].
Consider the function space

wl0,T] = {w € Cop0,T] : w(t) = /0 z(s)db(s) for some z € Li)b[O,T]}.

For w € C} ,[0,T], let the operator D : C7 ,[0,T] — L2 ,[0,T] be defined by the
formula

(2.1) Duw(t) =

Then C, , = C; ,[0,T] with inner product (w1, w2)cr | = fOT Duw (t)Dws(t)db(t) is
a separable Hilbert space. 7

Note that the two separable Hilbert spaces L2 [0, T] and C, ,[0, T are (topolog-
ically) homeomorphic under the linear operator given by (2.1). The inverse operator
of D is given by (D712)(t) = fg z(s)db(s) for t € [0,T]. In the case that a(t) =0,
then the operator D : Cf ,[0,T] — Lg)b[(), T] is an isometry.

In this paper, in addition to the conditions put on a(t) above, we now add the
condition

T
(2.2) / 0/ (&) Pdlal(£) < +o0

from which it follows that

T T
/ Da()2d[b(t) + |a] ()] = /

0

2

CO g1v(t) + Ja (1)

b'(t)

T
<M oy + M [l @) Pdlal() <+
0

where M = supc(o,r)(1/b'(t)). Thus, the function a : [0,7] — R satisfies the
condition (2.2) if and only if a(-) is an element of C}, ,[0, 7.

Let {e,}5Z; be a complete orthonormal set of functions in (Cy, [0, 7], [| - [[c: ,)
such that the De,’s are of bounded variation on [0,7]. For w € Cj ,[0,7] and
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x € Cq[0,T], we define the Paley-Wiener-Zygmund stochastic integral (w, )™ as

follows:
T n

(w,2)™ = lim_ ; ;(w,ej)c;,bDej(t)dx(t)

if the limit exists. We will emphasize the following fundamental facts. For each
w € C [0, T], the Paley-Wiener—Zygmund stochastic integral (w,z)™ exists for y-
a.e. x € Capl0,T]. If Dw = z € L2 ,[0,T] is of bounded variation on [0, T}, then the
Paley—Wiener—Zygmund stochastic integral (w,z)™ equals the Riemann—Stieltjes
integral fOT Duw(t)dz(t) = fOT z(t)dz(t). Also we note that for w,z € Cj ,[0,T7,
(w,z)~ = (w,z)c . Furthermore for each w € C;,[0,T], the Paley-Wiener-
Zygmund stochastic integral (w,x)™ is a Gaussian random variable on Cj [0, T
with mean (w, a)c; , = fOT Dw(t)da(t) and variance Hw||2;b = fOT{Dw(t)}2db(t).

3. Various Functions in the Banach Algebra F(C,;[0,T])

The Banach algebra F(C, 4[0,T]) is defined as the space of all functions F' on
Co [0, T] having the form

(3.1) F(x) :/C/ o exp{i(w, z)~ }do(w)

for s-a.e. & € Cyp[0,T], where o is in M(C" ,[0,T]), the space of complex-valued
Borel measures on B(CY, [0, 77), the Borel o-algebra of subsets of the Cameron—
Martin space C’é)b[O, T]. Note that every function given by (3.1) is s.i.m..

A function F on C, [0,T] is called a cylinder function if

(3.2) F(z) = f((h1,2)~, ..., (hn,2)™), x € Cyupl0,T)

for p-a.e. x € Cyp[0,T], where f is a complex-valued Lebesgue measurable function
on R™ and {hi,...,h,} is a finite set of functions in CY, [0, 7.

Example 3.1. Let Fy : C,3[0,T] — C be given by

(3-3) Fi(z) = f((w1,2)7, .., (wn, 2)7),

where {w1,...,w,} is a lineally independent set of functions in C! ,[0,7]. The
GFFT of functions given by the right-hand side of (3.3) are studied in [0]. Let
0=ty <ty <--- <ty <T be asubdivision of [0, T].

(i) For each I € {1,...,n}, let wi(t) = fot X[0,t,](8)db(s) on [0,T]. Then we can
rewrite equation (3.3) as

(3.4) Fa(@) = f(a(ty), .. a(ta)).

(ii) For each | € {1,...,n}, let w(t) = fot Xiti_1,t](8)db(s) on [0,T]. Then we
can rewrite equation (3.3) as

(3.5) Fy(z) = f(a(ty), () — z(t1), ..., x(tn) — 2(tn_1)).
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Letting a(t) = 0 and b(t) = ¢ on [0,T], the general Wiener space C, [0, T
reduces to the classical Wiener space Cy[0,7T]. In [2, 5, 6, 14], the authors studied
certain classes of functions of the forms (3.4) and (3.5) on Cy[0,T] and they used
those classes to complete their researches concerning the analytic Feynman integral
and the analytic Fourier—Feynman transform on Cy[0, T7.

Let S: Cy,,[0,T] — C}, [0, T] be the linear operator given by
t
(3.6) Sw(t) = / w(s)db(s).
0

Then the adjoint operator S* of S is given by

S*w(t) = w(T)b(t) — /0 w(s)db(s) = /O [w(T) — w(s)]db(s).

It is easily shown that S* is injective. For a more detailed study of the operator S
and S*, see [10].

Example 3.2. Let Fy : C,4[0,T] — C be given by

(3.7) Fa(z) = f( /0 )b, . /0 ! zn(t)x(t)db(t)>,

where {21, ..., 2,} is a lineally independent subset of L? [0, T]. Then

{wr,.. . wn} = {/O zl(s)db(s),...,/O.zn(s)db(s)}

is a lineally independent subset of C;, ,[0, 77, see [10]. Since S* is linear and injective,
{S*w1,...,S8*w,} also is an independent subset of C&yb[O,T]- Furthermore, by an
integration by parts formula, it follows that

T T
(3.8) (S*wn, z)~ = / () Dy (t)db(t) = / 2(t)20(1)db(t)
0 0
for each I € {1,...,n}. Hence
Fy(z) = f((S"w1,2)™, ..., (ST wn, 2)7)
is a cylinder function on C, [0, T.

Let 0 = tg < t; < --- < t, < T be a subdivision of [0,7] and for each
le{l,...,n}, let z(s) = x0,4,)(s) on [0,T]. Then we can rewrite equation (3.7) as

Fy(x) = f(/otl m(s)db(s)7/0t2x(s)db(s),...7/0tn x(s)db(s)).
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In view of the fact that Li(R™) \ Lo (R™) # 0, one can see that every cylinder
function on C, [0, 7] is not necessarily in the Banach algebra F(C,[0,T]). Thus
the rest of this section, we consider a class of cylinder functions on C, [0,7] and
provide necessary and sufficient conditions for the cylinder functions given by (3.2)
to be in the Banach algebra F(C, [0, T7).

Let M(R™) denote the space of complex-valued Borel measures on B(R™), the
Borel o-algebra of R”™. Let v be in M (R™). Then the Fourier transform 7 of v given
by the formula

(3.9) D) = /R e {z é ulvl}da({)’L

is a complex-valued function on R".

Next theorem provide necessary and sufficient conditions for the cylinder func-
tions on Cy 5[0, T] to be in F(Cy [0, T7]). This result subsumes similar known results
given in [5, 0, 7,

Theorem 3.3. Let {w1,...,w,} be a linearly independent subset of C, [0, 7. Let
F : Cop[0,T] — C be a cylinder function on Cy[0,T] given by the right-hand side
of (3.3). Then F is in F(Cy[0,T]) if and only if there exists a measure o € M(R™)
such that ¢ = f almost everywhere on R™.

We will provide a more basic theorem ensuring that various functions are in
F(Cub[0,T7]).

Theorem 3.4. Let (Q,%,7) be a o-finite measure space and let ¢, : Q — C, [0, 7]
be £-B(Cy,,[0,T]) measurable for each | € {1,...,n}. Let 6 : Q@ x R" — C be
given by 8(n;-) = U, (-) where vy, is in M(R™) for every n € Q and where the family
{vy :m € Q} satisfies:

(i) vy(B) is a L-measurable function of n for every B € B(R™),

(ii) |l € L1(Q, X, 7).
Under these conditions, the function F : Cy[0,T] — C given by

(3.10) F(z) = /Q 0(n: (01 (1), @)™ ..., (1), )~ ) dy ()

is in the class F(Cy [0, T]) and satisfies the inequality | F|| < fQ v lldy(n).

Proof. Using the techniques similar to those used in [7], we can show that ||v,]|

is measurable as a function of 7, that 6 is ¥ x B(R™)-measurable, and that the

integrand in equation (3.10) is a measurable function of n for every x € C, [0, T].
We define a measure 7 on ¥ x B(R"™) by

(3.11) ~(B) = /Qun(3<">)d~y(n) for B € X x B(R™).
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Then by the first assertion of [17, Theorem 3.1] with the current condition (ii), 7
satisfies ||7|| < fQ [vnlldy(n). Now let ® : Q x R™ — C} [0, T] be defined by

n

(312) (b(n;vlw"avn) = ZW%(V)
=1

Then @ is ¥ x B(R")-B(C, [0, T])-measurable using the hypothesis for ¢;, | €
{1,...,n}. Let 0 = 70®~!. Then clearly o € M( w.5[0,T) and satisfies [|o|| < [|7|].

From the change of variables theorem and the second assertion of [17, Theorem
3.1], it follows that for a.e. x € C,[0,T] and for every p > 0,

F(pr) = /Q P ((92(1), p2)™ - (1), p)™ )y (1)

-/ I exp{iévlm(n),pxr}duﬂ(m.-.,vnﬂdv(n)

- /wa exp {inz(cpz(n)ypx)”}dT(n; V1, .., Un)

(3.13) =1

— [ e {i@Ger, . v).pr) Yr(i o 00)
QXR™

:/ exp {i(w, px)~ }dr o @1 (w)
Cop[0.T]

= / exp {i(w, px)~ }do(w).
C.,0.T]

Clearly, o is a complex measure in M(C} ,[0,7]). Thus the function F' given by
equation (3.10) belongs to F(C, [0, T]) and satisfies the inequality

IF) = llo]l < II7] < /Q vl (n)

as desired. O

The following corollaries are relevant to Feynman integration theories and quan-
tum mechanics where exponential functions play an important role. Our next corol-
lary comes from the fact that F(C, 5[0, 77]) is a Banach algebra

Corollary 3.5. Let F be given by equation (3.10), and let 2 : C — C be an
entire function. Then (Eo F)(x) is in F(Cqp[0,T]). In particular, exp{F(z)} €
F(Cq[0,T7).

Corollary 3.6 (Necessary condition of Theorem 3.3 with weaker condi-

tion). Let {g1,...,9n} be a finite (not necessarily linearly independent) subset of
C. 410, T]. Given © =v with v € M(R"), define a function F : C,[0,T] — C by

F(z) =0((91,2)7, .., (gn, 2)7).
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Then F is in the class F(Cy [0, T]).

Proof. Let (Q,X,~) be a probability space and for I € {1,...,n}, let ¢;(n) = g
Take 0(n;-) = O(-) = U(+). Then for all p > 0 and for a.e. x € C,,[0,T],

/ 6(n; (01(1), p2)"™ .., (o), p)™ )y ()

(3.14) =/ (g1, p2)~, -+, (gn, p)™ ) dy(n)
@( glapx a"'v(gnvpx)w)
= F(px).
Hence F' € F(C, [0, 7). O

4. Generalized Fourier—Feynman Transform for the Bounded Cylinder
Functions

In this section, we obtain an explicit formula for the L, analytic GFFT of
the cylinder functions in F(Cy[0,T]). Let C4 = {X € C : Re(\) > 0} and let
Cy = {X € C\ {0} : Re(\) > 0}. Throughout the rest of this paper, A=*/2(or
A1/2) always is chosen to have positive real part for all A € (NLF. Let F be a s.i.m.
function on C,[0,T] such that Jp(A\) = fCa,b[O,T] F(\"Y22)du(x) exists and is
finite for all A > 0. If there exists a function J5(A) analytic in C; such that
Jr(A) = Jp(A) for all A > 0, then Jj()) is defined to be the analytic function
space integral of F over C,[0,7T] with parameter A, and for A € C, we write
E* [F] = B2 [F(z)] = JH(A). Let ¢ € R\ {0} and let F be a s.im. function
whose analytic function space integral J5(\) exists for all A € C,.. If the following
limit exists, we call it the analytic generalized Feynman integral of F' with parameter
q, and we write
(4.1) B[R] = Ee[F(2)] = lim B2 [F(2)]

A——1iq
where A — —iq through C,..

We are now ready to state the definition of the analytic GFFT of functions F
on C,[0,T).
Definition 4.1. Let F be a s.im. function on Cy[0,T]. For A € C; and y €
Capl0,T], let Th(F)(y) = E3™[F(y + z)]. For p € (1,2], we define the L, analytic
GFFT, T\P)(F) of F, by the formula

TP (F)(y) =L im. Ty(F)(y)

A——iq
A€C+
if it exists; i.e., for each p > 0,
lim |T>\( py) — T(p) )py) |p du(y) =0

A——iq
A€C+ Ca,b[ovT]
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where 1/p + 1/p" = 1. We define the L; analytic GFFT, Tq(l)(F) of F, by the
formula

(4.2) T (F)(y) = lim Th(F)(y) = lim B [F(y + )],
A——1iq A——1iq
AeCy AeCy

for s-a.e. y € Cy [0, T7, if the limit exists.

Remark 4.2. In [2, pp. 5-7], Cameron and Storvick exhibited two measurable
functions F' and G on the classical Wiener space Cy[0,T] such that F(x) = G(x)
for a.e. & € Cy[0,T] and yet their Fourier—-Feynman transforms are unequal a.e..
Based on this fact, Johnson and Skoug [15] defined the L,, analytic Fourier-Feynman
transform for functions on Cy[0, 7] under the concept of the scale-invariant mea-
surability. In fact, it was pointed out in [16] that the concept of ‘scale-invariant
measurability’ is correct for the analytic Fourier—Feynman transform and the an-
alytic Feynman integration theories. For more details, see [18, pp. 1155-1157].

We note that for 1 < p < 2, Tq(p)(F) is defined only s-a.e.. If Tq(p)(F) exists and
if F' ~ G, then Tq(p)(G) exists and Tq(p)(G) ~ Tq(p)(F). For more detailed studies of
the GFFT of functions on C, [0, T], see [9, 11].

In view of (4.1) and (4.2), we set

(4.3) T3V (F)(0) = B3 [F ().
Theorem 4.3 below is a simple modification of the result [12, Theorem 9]. The

condition (4.4) below will guarantee the existence of the right-hand side of (4.5)
below.

Theorem 4.3. Let go € R\ {0} and let F be given by equation (3.1). Suppose that
the associated measure o of F satisfies the condition

1
an [ ew{ ey e, bdieltw) < .
C‘;,b[O,T] |2q0‘ a,b a,b

Then, for all p € [1,2] and all ¢ € R\ [—qo,qo], the L, analytic GFFT Tq(p) (F)
exists and is given by the formula

T (F)(y)

4.5 . N 1 N
W e i) - el i) e, botw)
Cl 00,7 q @ ’

for s-a.e. y € Cyp[0,T).

In view of Theorems 3.4 and 4.3, we can provide the following evaluation formula
for the L, analytic GFFT of functions F in F(C, 5[0, T7).
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Theorem 4.4. Let (Q,%,7), {¢1,...,¢n}, {vy : 1 € Q}, 0, and F be as in
Theorem 3.4. Suppose that given a positive real qo,

™ {”¢|2|C* 2 It ey ol vl x 30,
:/Q[/ {||a||c/ inw ||c;b|vz|}du,7|( ﬂdﬂn)qm

Then for all p € [1,2] and all ¢ € R\ [—qo, qo], the L, analytic GFFT Tq(p)(F) of F
exists and is given by the formula

e = [ [ e utam - 5] Suam)|
(4.7) © =S
+z(—z’quﬂlzzlvm(n),a)q,b}du,,(vl’...,vnﬂdv(n)

(4.6)

for s-a.e. y € Cyp[0,T). In particular, if {p1(n), ..., en(n)} is an orthogonal set of
functions in C} ,[0,T], then it follows that

1)) = [ | [ e {3 utan.) ——Zvl ez,
(4.8) =t
(z‘q)1/2Zm<w<n>,a>%}dun<m,...,vnﬂdv(n)
=1

for s-a.e. y € C,[0,T].

Proof. From (3.13) with p = 1, we see that the function F given by (3.10) is
rewritten by

F(m):/Q Unexp {iivl(gol(n),x)N}dz/n(vl,...7vn)}d’y(77)

=1

= / exp {i(w,z)~ }dr o @' (w)
G p0.T]

for s-a.e. y € Cy[0,T], where 7 and ® are given by (3.11) and (3.12) respectively.
Thus the condition (4.6) implies the condition (4.4) with ¢ = 70 ®~! and by
Theorem 4.3, the L, analytic GFFT of F given by (3.10) exists and is given by the
formula

. N~ 1 L _
/ exp{zw,y) — 5o llwllz, , +i—ia) 1/2<w,a>c;b}df°¢ H(w)
c! ,10,T] q @ ’

a,
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. ~ 0
= [ ew{i@mon v - golRmo )l
QxRn q “

Filia) @0 o) g, fari.0)

- [ [ e {iuam -5

=1

n 2

Z vei(n)

=1

’
Can

i) S wl ey, e on. o) )
=1

for s-a.e. y € Cy [0, T]. From this, we also have (4.8). O
From (4.3) and (4.7) with p = 1, we have the following corollary.

Corollary 4.5. Let (Q,%,7), {¢1,.--.¢n}, {vy : n € Q}, 0, and F be as in
Theorem 4.4. Then, for all ¢ € R\ [—qo,qo0], the generalized analytic Feynman
integral E*4[F| of F exists and is given by the formula

priip@) = [ | [ e

i(—ig) "> ulan), a)er, }dvn(vl, S M)} dy(n).
=1

under the condition (4.6).

!
Caw

Given an orthonormal set {¢1, ..., g, } of functions in Cj, ;[0, T}, let the function
F : Cy[0,T] — C be given by
(49) F(Jj) :l/;((gl7x)wv"'7<gn7x)w)7 xe Ca,b[OaT]a

where 7 is the Fourier transform defined by equation (3.9) for a complex-valued
Borel measure v in M (R™). Then F is a bounded cylinder function, since |7(@)| <
lv|]| < 4o00. In [8], Chang and Choi studied an inverse transform corresponding to
the L, analytic GFFT of the function given by (4.9). One of the main results in [5]
is to establish the existence of the GFFT of the functions F' given by (4.9).

Corollary 4.6. Let go € R\ {0} and let F be given by equation (4.9). Suppose that
the associated measure v of F satisfies the condition

(4.10) / {\/L%b ZI l|}du| < +oo0.

Then, for each p € [1,2] and any q € R\ [—qo, o], the L, analytic GFFT Tq(p)(F)
exists and is given by the formula

TP (F)(y)

(4.11) s P e o n .
:/ P {szl gy vi +i(~ig) l/zzvz(gzva)c;,b}d”(v)
" 1=1

=1 2q =1
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for s-a.e. y € Cq [0, T.
Proof. From equation (3.14), we already observe that

F(z) =v((g1,2)~, s (gn,2)7)
=/Q(9(n; (pr(m), )™, ..., (pn(n), ) ) dry(n)

for s-a.e. x € Cy[0,T], where (Q, X, ) is any probability space, ¢;(n) = g; for each
le{l,...,n}, and 6(n;-) = U(+). Also, the condition (4.6) implies the condition

/Q Rr {|%Z||gllicablvz}d<lvnl x7)(n.7)

[ {A%Zw}dm )|t
:/ {' ”C@bZ| l|}du| < +o0,

Thus, in view of Theorem 4.4 with these setting, equation (4.8) yields the formula
(4.11) as desired. O

From (4.3) and (4.11) with p = 1, we have the following corollary.

Corollary 4.7. Let gy and F be as in Corollary 4.6. Then, for any q € R\[—qo, qo],
the generalized Feynman integral E*™4[F)| exists and is given by the formula

i & e .
E:nfq [F(m)] _ / exp{ _ % ZU? + Z(—Zq) 1/2 Zvl(glva)cg)b}dl/(v).
" =1 =1

5. Examples

In this section, we present various functions to apply our results in previous
section. Let the linear operator S on Cf, [0, be given by equation (3.6). Let

(5.1) W(t) = V36(T)~32b(t), t € [0,T).

Using an integration by parts formula, we see that {S*1} is an orthonormal set in
C},,10,T], and using (3.8), we also have

1 T T

—b(T)3/2(S*,z)~ = (8%, x)"~ :/ () Db(t)db(t) :/ z(t)db(t).

V3 0 0

For given 17 = (my,...,m,) € R" and o2 = (0%,...,0%) € R" with o7 > 0,
I=1,...,n,let v o be the Gaussian measure given by
n —-1/2 n (Ul . ml)2
(5.2) Vi o 5 (Q) = <H ﬂ'O'l) /Gexp{ — Z M}dﬁ’ G € B(R").
i

=1 =1
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Then v - € M(R") and

. BN <
Vs o2 (¥) = exp{ —3 g otul +i E mlul}.
=1 =1

Under these setting, we can apply our results in previous section to the function
having the form

Fole) = exp{ = 5 Y- oRllana) P+ i Y milana)” .
=1 =1

where {g1,...,9,} is an orthonormal set of functions in Cj, ,[0,7]. For instance,

taking n =1, g1 = S*, m = m; = 0 and o2 = 0? = 2b(T)3/3 in Fg, we have

(5.3) Fo(z) = exp{ - (/OTx(t)db(t))2}.

Using (5.2), the Fubini theorem and the integration formula [10, equation
(2.15)], it follows that for each nonzero real number ¢,

lallc,
Lo Z| ul v, 219

- 2 llallc m?

2o} 71/2/ ex {—vl—|—<ml— a’b)v —l}dv

L |:( l) - p 20[2 O_l2 /7|2q‘ l 2(712 l
oo 2 Jallc, ;
v my - m;

+ (2m0f)™ 1/2/ exp{—l—i-(—i— >vl—}dvl}

0 2012 le V24| 2012

2 2\—1/2 'Ul2 my ||ch/ l2 d
<H (2moy) Rexp fT‘ZQJr UTQ Jdl - 12 vy

=1 }
2 ‘QHC’ m?
9 1/2 / A ) mp
+ (270})™ Rexp 207 + o2 + N 2Ul

f[ { {||a||ab myllallcr } . { lallg: . myllallcr H
= exp — — - exp - .
e 124] V2] 124] V124
< +o0.
Thus for all ¢ € R\ {0}, Tq(p)(F(;) (and hence Tq(p) (F7)) exists by Corollary 4.6. Also,
we can apply Corollary 4.7 to obtain the generalized Feynman integrals E*e[Fg]

and E*nfe[Fy].
The function

(5.4) Fy(z) = exp {z /0 ’ x(t)db(s)}

l
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also is a function under our consideration, because

Fa(o) = expi(57b.0)"} = exp { o002 0.0) |

= /}Rexp{i(S*w,w)NU}d51(v) = 51((S*, 2)™)

where ¢ is given by (5.1) and 4; is the Dirac measure concentrated at v =
b(T)3/2/+/3 in R. Clearly, §; satisfies condition (4.10) with v replaced with &y,
for all g € R\ {0}.

The functions given by equations (5.3) and (5.4) arise naturally in quantum

mechanics.
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