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Abstract. Let A be a Banach algebra. An element a ∈ A has generalized Drazin inverse
if there exists b ∈ A such that

b = bab, ab = ba, a− a2b ∈ A
qnil.

New additive results for the generalized Drazin inverse of an operator over a Banach space

are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013

and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices

we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.

1. Introduction

Throughout the paper, X is a Banach space and A denotes the Banach algebra
L(X) of bounded linear operators on X. The commutant of a ∈ A is defined by
comm(a) = {x ∈ A | xa = ax}. An element a in A has generalized Drazin inverse,
i.e., g-Drazin inverse, if and only if there exists b ∈ comm(a) such that b = bab and
a − a2b ∈ Aqnil. Here, Aqnil = {a ∈ A | 1 + ax ∈ U(A) for every x ∈ comm(a)}.
For a Banach algebra A it is well known that a ∈ Aqnil ⇔ lim

n→∞
∥ an ∥ 1

n= 0. The

preceding b, if exists, is unique, and is denoted by ad. We call ad the g-Drazin
inverse of a. We always use Ad to denote the set of all operators having g-Drazin
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inverses in A. It was proved that a ∈ Ad if and only if there exists an idempotent
p ∈ comm(a) such that a+ p is invertible and ap ∈ Aqnil, i.e., a ∈ A is quasipolar
(see [15, Theorem 4.2]). Let a, b ∈ Ad. It is attractive to explore when the sum
a + b has g-Drazin inverse. In [12, Theorem 2.3], Djordjević and Wei proved that
if ab = 0 then a+ b ∈ Ad. In [11, Theorem 1], Deng and Wei proved that if ab = ba
then a + b ∈ Ad if and only if 1 + adb is g-Drazin invertible. In [25], Zou et al.
proved that if a2b = aba and b2a = bab then a + b ∈ Ad. We refer the reader to
[1, 4, 5, 7, 8, 10, 17, 18, 19] for further results.

In Section 2, we present some new additive results of g-Drazin inverses of the
sum a + b under a number of polynomial conditions. These generalize the main
results of Shakoor et al. (see [21, Lemma 5]).

In Section 3, we consider the g-Drazin inverse of a 2× 2 operator matrix

(1) M =

(
A B
C D

)
,

where A ∈ L(X), D ∈ L(Y ). Here, M is a bounded operator on X ⊕ Y . Such
operator matrices have various applications in singular differential and difference
equations, Markov chains, and iterative methods. The Drazin inverse of operator
matrices has been well studied recently, e.g., [2, 3, 6, 9, 13, 22, 23, 24]. We generalize
recent results of Deng et al. (see [10, Theorem 2, 3 and 5]), and of Yang and Liu
(see [23, Theorem 3.3]).

If a ∈ A has g-Drazin inverse ad, then the element aπ = 1 − aad is called the
spectral idempotent of a. In Section 4, we illustrate the g-Drazin inverse of a 2× 2
operator matrix M under various conditions on spectral idempotents.

2. G-Drazin inverses

The aim of this section is to establish new additive results for g-Drazin inverses
and give the explicit formulas for the g-Drazin inverse of the sum a+ b. We begin
with

Lemma 2.1. Let a, b ∈ A and ab = 0. If a, b ∈ A have g-Drazin inverses, then
a+ b ∈ A has g-Drazin inverse and

(a+ b)d = (1− bbd)[

∞∑
i=0

bn(ad)n]ad + bd[

∞∑
i=0

(bd)nan](1− aad).

Proof. See [12, Theorem 2.3]. 2

Lemma 2.2. Let a, b, c ∈ A. If a, b ∈ A have g-Drazin inverses, then

(
a c
0 b

)
∈

M2(A) has g-Drazin inverse.

Proof. See [12, Lemma 2.2]. 2
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Lemma 2.3. Let a, b ∈ Ad. If a2b = 0, b2 = 0 and bab = 0, then

(a+ b)d = ad + b(ad)2 + ab(ad)3.

Proof. Since (a+ b)2 = a2 + (ab+ ba), (ab+ ba)2 = 0 and a2(ab+ ba) = 0,

((a+ b)2)d = (a2 + (ab+ ba))d.

As (ab + ba)2 = 0, then (ab + ba)d = 0. By applying Lemma 2.1 and using
(a2)d = (ad)2 we have,

((a+ b)2)d = (ad)2 + (ab+ ba)(ad)4.

Hence,

(a+ b)d = (a+ b)((a+ b)2)d = ad + b(ad)2 + ab(ad)3,

as required. 2

We are ready to prove:

Theorem 2.4. Let a, b ∈ Ad. If a3b = 0, bab = 0, ba2b = 0, then a+ b ∈ Ad and

(a+ b)d = (1, b)Md

(
a
1

)
,Md = Ad +B(Ad)2 +AB(Ad)3,

where A =

(
a2 0

a+ b b2

)
, B =

(
ab a2b+ ab2

0 ab

)
, and

Ad = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
.

Proof. Set

M =

(
a2 + ab a2b+ ab2

a+ b b2 + ab

)
.

Then

M =

(
a2 0

a+ b b2

)
+

(
ab a2b+ ab2

0 ab

)
= A+B.

Since a, b ∈ Ad, it follows by Lemma 2.2, that A has g-Drazin inverse. Clearly,
B2 = 0, and so B has g-Drazin inverse. By a direct computation, we see that

AB =

(
0 0
a2b a2b2

)
, and so A2B = 0 and BAB = 0. Moreover, B2 = 0.

Accordingly, M has g-Drazin inverse by Lemma 2.3.
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Clearly, M = (

(
a
1

)
(1, b))2. It follows by [14, Theorem 2.7] that

(
a
1

)
(1, b)

has g-Drazin inverse. By using Cline’s formula, a + b = (1, b)

(
a
1

)
has g-Drazin

inverse.
By virtue of [16, Theorem 2.1],

(a+ b)d =
(
(1, b)

(
a
1

))d
= (1, b)Md

(
a
1

)
.

In light of Lemma 2.3, Md = Ad +B(Ad)2 +AB(Ad)3. Moreover, we have

A =

(
a2 0
a 0

)
+

(
0 0
b b2

)
:= H +K.

One easily checks that

H =

(
a2 0
a 0

)
=

(
a
1

)
(a, 0).

Since (a, 0)

(
a
1

)
= a2 ∈ Ad, it follows by Cline’s formula, we see that

Hd =

(
a
1

)
((a2)d)2(a, 0) =

(
a
1

)
(ad)4(a, 0)

=

(
a(ad)4a 0
(ad)4a 0

)
=

(
(ad)2 0
(ad)3 0

)
.

Likewise, we have

Kd =

(
0
b

)
(bd)4(1, b) =

(
0 0

(bd)3 (bd)2

)
.

Clearly, HK = 0. By virtue of [12, Theorem 2.3],

Ad = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd).

2

Corollary 2.5. Let a, b ∈ Ad. If a2b = 0, b2a = 0 and (ab)3 = 0, then a+ b ∈ Ad.

Proof. Since (ab)3 = 0, we see that ab ∈ Ad. By using Cline’s formula, ba ∈ Ad.
Since a2b = 0, b2a = 0, it follows by Lemma 2.3, that a2 + ab, ba + b2 ∈ Ad. Let
p = a2 + ab and q = ba+ b2. Then pq = ab3. Hence

qpq = (ba+ b2)ab3 = 0, qp2q = (qp)(pq) = (ba3)(ab3) = 0
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and
p3q = p(p2q) = (a2 + ab)(abab3) = ababab3 = (ab)3b2 = 0.

In view of Theorem 2.4, (a + b)2 = p + q ∈ Ad. This completes the proof by [14,
Theorem 2.7]. 2

Let a, b ∈ Ad. If a2b = 0 and bab = 0, then a + b ∈ Ad. This is a direct
consequence of Theorem 2.4. Furthermore, we derive

Corollary 2.6. Let a, b ∈ Ad. If a2b = 0, bab2 = 0 and (ab)3 = 0, then a+ b ∈ Ad.

Proof. Let p = a2+ab and q = ba+b2. As in the proof in Corollary 2.5, we see that
p, q ∈ Ad. We easily check that pq = ab3+ab2a, and so qpq = (ba+b2)(ab3+ab2a) =
0, p2q = (a2 + ab)(ab3 + ab2a) = 0. Therefore (a+ b)2 = p+ q ∈ Ad. The proof is
complete by Theorem 2.4. 2

Wang et al. studied the Drazin inverse of the sum of two bounded linear oper-
ators (see [22]). We now generalize the main results in [22] as follows.

Theorem 2.7. Let a, b ∈ Ad. If a3b = 0, a2b+ bab = 0, then a+ b ∈ Ad and

(a+ b)d = (1, b)Md

(
a
1

)
,Md = Ad +B(Ad)2 +B2(Ad)3,

where A =

(
a2 0

a+ b b2

)
, B =

(
ab a2b+ ab2

0 ab

)
, and

Ad = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
.

Proof. Set

M =

(
a2 + ab a2b+ ab2

a+ b b2 + ab

)
.

Then

M =

(
a2 0

a+ b b2

)
+

(
ab a2b+ ab2

0 ab

)
:= A+B.

Since a3b = 0, a2b+ bab = 0, we see that

(a+ b)(a2b+ ab2) + b2(ab)
= a2b2 + ba2b+ bab2 + b2(ab)
= a2b2 + ba2b+ (−a2b)b+ b(−a2b)
= 0.

Thus, we have AB = 0. Since (ab)2 = a(bab) = −a3b = 0, we easily check that
B3 = 0; hence, B has g-Drazin inverse. Since a, b ∈ A have g-Drazin inverses,
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it follows by Lemma 2.2, that A has g-Drazin inverse. In light of Lemma 2.3,
M = A+B has g-Drazin inverse.

By using Lemma 2.3 again, Md = Ad +B(Ad)2 +B2(Ad)3. Obviously, we have

A =

(
a2 0
a 0

)
+

(
0 0
b b2

)
:= H +K.

As in the proof of Theorem 2.4, one easily checks that

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
.

Moreover,

Ad = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd),

as required. 2

Corollary 2.8. Let a, b ∈ Ad. If (ab)2 = 0, a2b+ bab = 0, then a+ b ∈ Ad.

Proof. Clearly, a3b = −(ab)2 = 0, and therefore we obtain the result by Theorem
2.4. 2

We note that Corollary 2.8, is a nontrivial generalization of [12, Theorem 2.3],
as the following shows.

Example 2.9. Let A and B be operators, acting on separable Hilbert space l2(N),
defined as follows respectively:

A(x1, x2, x3, x4, · · · ) = (x1, x4, 0, 0, 0, · · · ),
B(x1, x2, x3, x4, · · · ) = (0, x3, x3, x1, 0, · · · ).

Then we easily check that (AB)2 = 0, A2B + BAB = 0 and A,B ∈ L(l2(N))d.
Hence A+B has g-Drazin inverse by Corollary 2.8, in this case, AB ̸= 0.

3. Splitting Approach

To illustrate the preceding results, we are concerned with the g-Drazin inverse
for an operator matrix. Throughout this section, the operator matrix M is given
by (1.1), i.e.,

(3.1) M =

(
A B
C D

)
,
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where A ∈ L(X)d, D ∈ L(Y )d. Using different splitting approaches, we will obtain
various conditions for the g-Drazin inverse of M .

Theorem 3.1. If A2BC = 0, A2BD = 0, CBC = 0, CBD = 0, CABC = 0 and
CABD = 0. Then M has g-Drazin inverse.

Proof. Let p =

(
A B
0 0

)
and q =

(
0 0
C D

)
, then M = p+ q. By applying [10,

Theorem 3], it is obvious that p, q have g-Dazin inverses. Now we have

p3q =

(
A2BC A2BD

0 0

)
=

(
0 0
0 0

)
and

qpq =

(
0 0

CBC CBD

)
=

(
0 0
0 0

)
.

Also

qp2q =

(
0 0

CABC CABD

)
=

(
0 0
0 0

)
.

Then by Theorem 2.4, M has g-Drazine inverse. 2

Corollary 3.2. If ABC = 0, ABD = 0, CBC = 0 and CBD = 0. Then M has
g-Drazin inverse.

Proof. This is obvious by Theorem 3.1. 2

Regarding a complex matrix as the operator matrix on C × C, we now show
that corollary 3.2 is a non-trivial generalization of [10, Theorem 2]

Example 3.3. Let

A =

 0 1 1
0 0 0
0 0 0

 , B =

 1 1
1 0
−1 0

 ,

C =

(
1 0 1
0 0 0

)
D =

(
1 1
0 0

)
be complex matrices and set

M =

(
A B
C D

)
.

Then
ABC = 0, ABD = 0, CBC = 0, CBD = 0.

In view of Corollary 3.2 M has g-Drazin inverse but BC ̸= 0 and BD ̸= 0.
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Theorem 3.4. If A3B = 0, CA2B = 0, BCB = 0, DCB = 0, BCAB = 0 and
DCAB = 0, then M has g-Drazin inverse.

Proof. Let p =

(
A 0
C 0

)
and q =

(
0 B
0 D

)
, then M = p+ q. In view of Lemma

2.2, p and q have g-Drazin inverses. Now we have

p3q =

(
0 A3B
0 CA2B

)
=

(
0 0
0 0

)
and

qpq =

(
0 BCB
0 DCB

)
=

(
0 0
0 0

)
.

Also

qp2q =

(
0 BCAB
0 DCAB

)
=

(
0 0
0 0

)
.

Then by Theorem 2.4, M has g-Drazine inverse. 2

Corollary 3.5. If A2B = 0, BCB = 0, DCB = 0 and CAB = 0, then M has
g-Drazin inverse.

Proof. It is a special case of Theorem 3.3. 2

Theorem 3.6. If (A2 + BC)BD = 0, CABD = 0, DCBD = 0, ABC = 0 and
CBC = 0, then M has g-Drazin inverse.

Proof. Let p =

(
A B
C 0

)
and q =

(
0 0
0 D

)
, then M = p + q. Since ABC =

0, CBC = 0, it follows by Corollary 3.2 that p has g-Drazin inverse. By Lemma
2.2, q has g-Dazin inverse. Now we have

p3q =

(
0 A2BD +BCBD
0 CABD

)
=

(
0 0
0 0

)
and

qpq =

(
0 0
0 0

)
.

Also

qp2q =

(
0 0
0 DCBD

)
=

(
0 0
0 0

)
.

Then by Theorem 2.4, M has g-Drazine inverse. 2

Corollary 3.7. If BC = 0, BD = 0, then M has g-Drazin inverse.

Proof. This is clear from Theorem 3.6. 2

We are now ready to prove:

Theorem 3.8. If A3B = 0, CAB = 0, CA2B = 0, BCB = 0 and DCB = 0, then
M has g-Drazin inverse.
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Proof. Let p =

(
A 0
0 0

)
and q =

(
0 B
C D

)
, then M = p + q. Clearly, p has

g-Drazin inverse. Since BCB = 0 and DCB = 0, it follows by Corollary 3.5 that q
has g-Dazin inverse. We check that

p3q =

(
0 A3B
0 0

)
=

(
0 0
0 0

)
and

qpq =

(
0 0
0 CAB

)
=

(
0 0
0 0

)
.

Also

qp2q =

(
0 0
0 CA2B

)
=

(
0 0
0 0

)
.

According to Theorem 2.4, M has g-Drazine inverse. 2

As an immediate consequence of Theorem 3.8, we now derive

Corollary 3.9. If AB = 0 and CB = 0, then M has g-Drazin inverse.

4. Spectral Conditions

Let M be an operator matrix M given by (1.1). It is of interest to consider
the g-Drazin inverse of M under generalized Schur condition D = CAdB (see [20]).
The goal of this section is to consider another splitting of the block matrix M under
such condition and present alternative theorems on spectral idempotents.

Theorem 4.1. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be given
by (1.1). If I +AdBCAd is g-Drazin invertible,

BCAπA = 0, BCAπB = 0, A2BCA = ABCA2, D = CAdB,

then M has g-Drazin inverse.

Proof.

M =

(
A B
C CAdB

)
= P +Q,

where

P =

(
A2Ad AAdB
C CAdB

)
, Q =

(
AAπ AπB
0 0

)
.

By assumption, we verify that P 3Q = 0, QPQ = 0, QP 2Q = 0. Clearly, Q is
quasinilpotent, and so it has g-Drazin inverse. Furthermore, we have

P = P1 + P2, P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
0 0

CAπ 0

)
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and P2P1 = 0, P 2
2 = 0. Clearly, P2 has g-Drazin inverse. Moreover, we have

P1 =

(
AAd

CAd

)(
A AAdB

)
.

By hypothesis, we see that(
A AAdB

)( AAd

CAd

)
= A2Ad +AAdBCAd.

It is obvious that, A2Ad = A(AAd) has g-Drazin inverse. Since (CAd) (AAdB) =
CAdB = D has g-Drazin inverse, it follows by Cline’s formula that AAdBCAd has
g-Drazin inverse.

Since A2BCA = ABCA2, we easily check that

(A2Ad)(AAdBCAd) = Ad(A2BCA)(Ad)2

= Ad(ABCA2)(Ad)2

= AdABCAAd

= (AAdBCAd)(A2Ad).

In light of [11, Theorem 1], A2Ad + AAdBCAd has g-Drazin inverse. By using
Cline’s formula again, P1 has g-Drazin inverse. Thus, by [12, Theorem 2.3], P g-
Drazin inverse. By using Theorem 2.4, M has g-Drazin inverse, as asserted. 2

Corollary 4.2. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be given
by (1.1). If I +AdBCAd is g-Drazin invertible,

BCA = 0, BCB = 0, D = CAdB,

then M has g-Drazin inverse.

Proof. Since BCA = 0, we see that BCAπA = 0 and A2BCA = ABCA2 = 0.
Moreover, BCAπB = BC(I2 − AAd)B = BCB = 0. This completes the proof by
Theorem 4.1. 2

Theorem 4.3. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be given
by (1.1). If I +AdBCAd is g-Drazin invertible,

AπBCAπ = 0, ABCAπ = 0, A2BCA = ABCA,D = CAdB,

then M has g-Drazin inverse.

Proof. We easily see that

M =

(
A B
C CAdB

)
= P +Q,

where

P =

(
A2Ad B
CAAd CAdB

)
, Q =

(
AAπ 0
CAπ 0

)
.
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Then we check that P 3Q = 0, QPQ = 0, QP 2Q = 0. Clearly, Q has g-Drazin
inverse. Furthermore, we have

P = P1 + P2, P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
0 AπB
0 0

)
and P1P2 = 0. Clearly, P2 is nilpotent, and it has g-Drazin inverse. Obviously, we
have

P1 =

(
AAd

CAd

)(
A AAdB

)
.

By hypothesis, we see that

(
A AAdB

)( AAd

CAd

)
= A2Ad +AAdBCAd.

As in the proof of Theorem 4.1, we easily check that A2Ad + AAdBCAd has g-
Drazin inverse. Therefore P1 has g-Drazin inverse. By using Lemma 2.2, again, M
has g-Drazin inverse, as asserted. 2

By using the other splitting approach of the block operator matrix, we now
ready to prove:

Theorem 4.4. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be given
by (1.1). If I +AdBCAd is g-Drazin invertible,

AAπBC = 0, CAπBC = 0, A2BCA = ABCA,D = CAdB,

then M has g-Drazin inverse.

Proof. Let

M =

(
A B
C D

)
= P +Q,

where

P =

(
0 AπB
0 0

)
, Q =

(
A AAdB
C CAdB

)
.

Clearly, P is nilpotent, and so it has g-Drazin inverse.
Furthermore, we have

Q = Q1 +Q2, Q1 =

(
AAπ 0
CAπ 0

)
, Q2 =

(
A2Ad AAdB
CAAd CAdB

)
and Q1Q2 = 0. We easily see that Q1 is quasinilpotent, and it has g-Drazin inverse.
Moreover,

Q2 =

(
AAd

CAd

)(
A2Ad AAdB

)
.
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By hypothesis, we see that(
A2Ad AAdB

)( AAd

CAd

)
= A2Ad +AAdBCAd.

As in the proof of Theorem 4.1, we easily check that A2Ad+AAdBCAd has g-Drazin
inverse. Therefore Q2 has g-Drazin inverse. By hypothesis, we check that P 2 = 0
and QPQ = 0, and so P 3Q = 0 and P 2Q +QPQ = 0. By virtue of Theorem 2.7,
M has g-Drazin inverse, as asserted. 2

Analogously, we derive

Proposition 4.5. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be
given by (1.1). If I +AdBCAd is g-Drazin invertible,

ABCAπA = 0, A2BCA = ABCA,D = CAdB,

then M has g-Drazin inverse.

Proof. Let

M =

(
A B
C D

)
= P +Q,

where

P =

(
0 0

CAπ 0

)
, Q =

(
A AB

CAAd CAdB

)
.

As in the proof of Theorem 4.1, we easily check that P and Q have g-Drazin inverses.
Since AdBCAπA = (Ad)2ABCAπA = 0, we easily check that and P 2 = 0 and
QPQ = 0. Therefore we complete the proof by Theorem 2.4. 2

Corollary 4.6. Let A ∈ L(X), D ∈ L(Y ) have g-Drazin inverses and M be given
by (1.1). If I +AdBCAd is g-Drazin invertible,

ABC = 0, D = CAdB,

then M has g-Drazin inverse.

Proof. This is obvious by Proposition 4.5. 2
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