DOI QR코드

DOI QR Code

A Study on Accelerated Corrosion Rate of Stainless Steel Type 630 with Increasing Temperature of B-free Alkaline Coolant

무붕산 알칼리 냉각재 온도 증가에 따른 Type 630 스테인리스강의 부식특성 평가 연구

  • Received : 2024.05.31
  • Accepted : 2024.06.17
  • Published : 2024.06.30

Abstract

Stainless 630 (or 17-4PH) is a precipitation-hardening martensitic stainless steel that has excellent mechanical properties and corrosion resistance. These characteristics make the STS630 to be used as a consisting material for various components such as spider, pin, spring, and spring retainer, of the control rod drive mechanism (CRDM) in pressurized water reactors (PWRs). In general, it is well known that the oxide layer of stainless steel consists of a duplex layer, a compact inner layer of FeCr2O4 spinel, and a coarse-grained outer layer of Fe3O4 spinel in PWR primary coolant condition. However, the characteristics of the oxide layer can be sensitively influenced by various water chemistry conditions such as temperature, dissolved oxygen, dissolved hydrogen, pH, pH adjuster type, and exposure time. In this work, we investigate the corrosion properties of the STS630 as a function of coolant temperature in an NH3 alkaline solution for its boron-free application in a small modular reactor, to confirm the feasibility for usage as a boron-free SMR structural material. As a result, oxide layer of corroded STS630 is consist of double-layer oxides consisting of a Cr-rich dense inner oxide and a Fe-rich polyhedral outer particles like as that in commercial PWR primary coolant. The corrosion rate of STS630 increases with increase in test time and temperature and the corrosion rate-time model equation was developed based on experimental data. Overall, it is expected that the results in this study provides useful data for the corrosion behavior of STS630 in alkaline environments, contributing to the development of selecting suitable materials for SMRs.

Keywords

Acknowledgement

본 연구는 한국연구재단을 통해 과학기술정보통신부 원자력연구개발사업(RS-2022-00143316)의 지원을 받아 수행하였다.

References

  1. "소형모듈원전(SMR)의 현황 및 전망", 해외건설 INSIGHT, 해외건설협회 해외건설정책지원센터, 2023.
  2. " Small Modular Reactors: Challenges and Opportunities", OECD NEA, 2021.
  3. "소형 혁신원자로 기술조사보고서", 한국원자력학회 원자로 시스템기술연구부회, 2020.
  4. 이정익, "혁신형 SMR 기술개발사업", I-SMR 정부 공청회, 2021.
  5. 남현석, 김태순, 김만원, 윤은섭, 2023, "혁신형 SMR 환경 조건을 고려한 원자로 및 격납용기 적용성 검토 현황", KPVP 2023년도 연차학술대회, 부산, Nov. 22-24.
  6. 심희상, 전순혁, 허도행, 김성우, "혁신형 소형모듈원전의 무붕산 수화학과 재료 건전성 이슈", KPVP 2023년도 연차학술대회, 부산, Nov. 22-24.
  7. D. Sandusky, W. Lunceford, S. M. Bruemmer, M. A. Catalan, 2013, "Assessment of Materials Issues for Light-Water Small Modular Reactors", Pacific Northwest Natioanl Laboratory, Washington DC, PNNL-22290.
  8. 정장규, 이병진, 김형헌, 2019, "무붕산운전 원자로계통개념 설계 기술개발", 전력기술, KINX2019057946.
  9. 맹완영, 최병선, 연제원, 강덕원, 이혜복, 왕찬식, 2009, "원자력 수화학 편람", 동화기술.
  10. Y. H. Cheon, N. Y. Lee, B. H. Park, S. C. Park, E. K. Kim, 2015, "Primary Coolant pH Control for Soluble Boron-Free PWRs, Transaction of Korean Nuclear Society Fall Meeting, Gyeongju, Korea, Oct. 28-30.
  11. ASTM, A693-24, 2024, "Standard Specification for Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip", ASTM International, West Conshohocken, PA.
  12. ASTM, G1-03, 2017, "Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens", ASTM International, West Conshohocken, PA.
  13. J. Robertson, "The Mechanism of High Temperature Aqueous Corrosion of Stainless Steels", Corros. Sci. Vol.32, No.4, pp.443-465, 1991. https://doi.org/10.1016/0010-938X(91)90125-9
  14. "High-Temperature Characteristics of Stainless Steels", A Designers' Handbook Series No. 9004, pp.16-25, American Iron and Steel Institute.
  15. Z. L. Wang, "Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies", J. Phys. Chem. B, Vol.104, pp.1153-1175, 2000. https://doi.org/10.1021/jp993593c
  16. S. E. Ziemniak, M. Hanson, "Corrosion Behavior of 304 stainless steel in high temperature, hydrogenated water", Corros. Sci., Vol.44, pp.2209-2230, 2002. https://doi.org/10.1016/S0010-938X(02)00004-5
  17. S. E. Ziemniak, M. Hanson, P. C. Sander, "Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water, Corros. Sci., Vol.50, pp.2465-2477, 2008. https://doi.org/10.1016/j.corsci.2008.06.032
  18. S. Ghosh, M. K. Kumar, V. Kain, "High temperature oxidation behavior of AISI 304L stainless steel: Effect of surface working operations, Appl. Surf. Sci., Vol.264, pp.312-319, 2013. https://doi.org/10.1016/j.apsusc.2012.10.018
  19. H. Chen, R. Tand, C. Long, G. Le, "Effect of exposure temperature on the corrosion behaviors of TP347H austenitic stainless steel in supercritical water", Corros. Sci., Vol.161, pp.108188, 2019.
  20. A. Chouchaine, S. Kouass, F. Touati, N. Amdouni, H. Dhaouadi, "Fe3O4 nanomaterials: synthesis, optical and electrochemical properties", J. Australian Ceramic Soc., Vol.57, pp.469-477, 2021. https://doi.org/10.1007/s41779-020-00544-3