References
- Berger, R. G. (2007) Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. Springer Berlin, Heidelberg.
- Celik, A., Flitsch, S. L. and Turner, N. J. (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Org. Biomol. Chem. 3, 2930-2934. https://doi.org/10.1039/b506159h
- Cho, M. A., Han, S., Lim, Y. R., Kim, V., Kim, H. and Kim, D. (2019) Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. (Seoul) 27, 127-133. https://doi.org/10.4062/biomolther.2018.183
- Denisov, I. G., Makris, T. M., Sligar, S. G. and Schlichting, I. (2005) Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253-2278. https://doi.org/10.1021/cr0307143
- Dudareva, N., Klempien, A., Muhlemann, J. K. and Kaplan, I. (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16-32. https://doi.org/10.1111/nph.12145
- Duisken, M., Benz, D., Peiffer, T. H., Blomeke, B. and Hollender, J. (2005) Metabolism of delta(3)-carene by human cytochrome p450 enzymes: identification and characterization of two new metabolites. Curr. Drug Metab. 6, 593-601. https://doi.org/10.2174/138920005774832614
- Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2015) Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. https://doi.org/10.1016/j.abb.2015.03.025
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-oligomycin A complex and role of the tryptophan 178 residue. Mol. Cells 39, 211-216. https://doi.org/10.14348/molcells.2016.2226
- Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Jeong, D., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2017) Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis. Biochem. Biophys. Res. Commun. 482, 902-908. https://doi.org/10.1016/j.bbrc.2016.11.131
- Helfrich, E. J. N., Lin, G.-M., Voigt, C. A. and Clardy, J. (2019) Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 15, 2889-2906. https://doi.org/10.3762/bjoc.15.283
- Hernandez-Ortega, A., Vinaixa, M., Zebec, Z., Takano, E. and Scrutton, N. S. (2018) A toolbox for diverse oxyfunctionalisation of monoterpenes. Sci. Rep. 8, 14396.
- Hussain, H. A. and Ward, J. M. (2003) Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl. Environ. Microbiol. 69, 373-382. https://doi.org/10.1128/AEM.69.1.373-382.2003
- Ikeda, H. and Omura, S. (1997) Avermectin biosynthesis. Chem. Rev. 97, 2591-2610. https://doi.org/10.1021/cr960023p
- Kim, V., Kim, D., Lee, S., Lee, G., Lee, S. A., Kang, L. W. and Kim, D. (2022) Structural characterization and fatty acid epoxidation of CYP184A1 from Streptomyces avermitilis. Arch. Biochem. Biophys. 727, 109338.
- Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R. and Kelly, S. L. (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem. Biophys. Res. Commun. 307, 610-619. https://doi.org/10.1016/S0006-291X(03)01231-2
- Lee, Y., Park, H. G., Kim, V., Cho, M. A., Kim, H., Ho, T. H., Cho, K. S., Lee, I. S. and Kim, D. (2018) Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem. Biol. Interact. 289, 90-97. https://doi.org/10.1016/j.cbi.2018.04.029
- Lim, Y. R., Han, S., Kim, J. H., Park, H. G., Lee, G. Y., Le, T. K., Yun, C. H. and Kim, D. (2017) Characterization of a biflaviolin synthase CYP158A3 from Streptomyces avermitilis and its role in the biosynthesis of secondary metabolites. Biomol. Ther. (Seoul) 25, 171-176. https://doi.org/10.4062/biomolther.2016.182
- Lin, S., Ma, B., Gao, Q., Yang, J., Lai, G., Lin, R., Yang, B., Han, B. N. and Xu, L. H. (2022) The 16α-hydroxylation of progesterone by cytochrome P450 107X1 from Streptomyces avermitilis. Chem. Biodivers. 19, e202200177.
- Louie, K. B., Kosina, S. M., Hu, Y., Otani, H., de Raad, M., Kuftin, A. N., Mouncey, N. J., Bowen, B. P. and Northen, T. R. (2020) Mass spectrometry for natural product discovery. In Comprehensive Natural Products III: Chemistry and Biology, Vol. 6, pp. 263-306. Elsevier.
- Lupien, S., Karp, F., Ponnamperuma, K., Wildung, M. and Croteau, R. (1995) Cytochrome P450 limonene hydroxylases of mentha species. Drug Metabol. Drug Interact. 12, 245-260. https://doi.org/10.1515/DMDI.1995.12.3-4.245
- Marmulla, R. and Harder, J. (2014) Microbial monoterpene transformations-a review. Front. Microbiol. 5, 346.
- O'Keefe, D. P., Tepperman, J. M., Dean, C., Leto, K. J., Erbes, D. L. and Odell, J. T. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105, 473-482. https://doi.org/10.1104/pp.105.2.473
- Ortiz de Montellano, P. R. (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932-948. https://doi.org/10.1021/cr9002193
- Padayachee, T., Lamb, D. C., Nelson, D. R. and Syed, K. (2023) Structure-function analysis of the biotechnologically important cytochrome P450 107 (CYP107) enzyme family. Biomolecules 13, 1733.
- Pandey, B. P., Lee, N., Choi, K. Y., Jung, E., Jeong, D. H. and Kim, B. G. (2011) Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids. Enzyme Microb. Technol. 48, 386-392. https://doi.org/10.1016/j.enzmictec.2011.01.001
- Rudolf, J. D., Chang, C. Y., Ma, M. and Shen, B. (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141-1172. https://doi.org/10.1039/C7NP00034K
- Schewe, H., Mirata, M. A., Holtmann, D. and Schrader, J. (2011) Biooxidation of monoterpenes with bacterial monooxygenases. Process Biochem. 46, 1885-1899. https://doi.org/10.1016/j.procbio.2011.06.010
- Sharrar, A. M., Crits-Christoph, A., Meheust, R., Diamond, S., Starr, E. P. and Banfield, J. F. (2020) Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416-20. https://doi.org/10.1128/mBio.00416-20
- Shaya, J., Aloum, L., Lu, C. S., Corridon, P. R., Aoudi, A., Shunnar, A., Alefishat, E. and Petroianu, G. (2023) Theoretical study of hydroxylation of α- and β-pinene by a cytochrome P450 monooxygenase model. Int. J. Mol. Sci. 24, 5150.
- Sherman, D. H., Li, S., Yermalitskaya, L. V., Kim, Y., Smith, J. A., Waterman, M. R. and Podust, L. M. (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289-26297. https://doi.org/10.1074/jbc.M605478200
- Shrestha, P., Oh, T. J. and Sohng, J. K. (2008) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol. Lett. 30, 1101-1106. https://doi.org/10.1007/s10529-008-9654-0
- Tyc, O., Song, C., Dickschat, J. S., Vos, M. and Garbeva, P. (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292. https://doi.org/10.1016/j.tim.2016.12.002
- Waksman, S. A. and Henrici, A. T. (1943) The nomenclature and classification of the actinomycetes. J. Bacteriol. 46, 337-341. https://doi.org/10.1128/jb.46.4.337-341.1943
- Wong, N. R., Liu, X., Lloyd, H., Colthart, A. M., Ferrazzoli, A. E., Cooper, D. L., Zhuang, Y., Esquea, P., Futcher, J., Pochapsky, T. M., Matthews, J. M. and Pochapsky, T. C. (2018) A new approach to understanding structure-function relationships in cytochromes P450 by targeting terpene metabolism in the wild. J. Inorg. Biochem. 188, 96-101. https://doi.org/10.1016/j.jinorgbio.2018.08.006