DOI QR코드

DOI QR Code

Structural Insights into the Interaction of Terpenoids with Streptomyces avermitilis CYP107P2

  • Eunseo Jeong (Department of Biological Sciences, Konkuk University) ;
  • Vitchan Kim (Department of Biological Sciences, Konkuk University) ;
  • Changmin Kim (Department of Biological Sciences, Konkuk University) ;
  • Yoo-bin Lee (Department of Biological Sciences, Konkuk University) ;
  • Donghak Kim (Department of Biological Sciences, Konkuk University)
  • Received : 2024.03.17
  • Accepted : 2024.03.27
  • Published : 2024.07.01

Abstract

Streptomyces avermitilis genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in Escherichia coli and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (Kd) ranged from 15.9 to 50.8 µM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid compound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a Streptomyces P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme's involvement in terpene reactions.

Keywords

References

  1. Berger, R. G. (2007) Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. Springer Berlin, Heidelberg.
  2. Celik, A., Flitsch, S. L. and Turner, N. J. (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Org. Biomol. Chem. 3, 2930-2934. https://doi.org/10.1039/b506159h
  3. Cho, M. A., Han, S., Lim, Y. R., Kim, V., Kim, H. and Kim, D. (2019) Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. (Seoul) 27, 127-133. https://doi.org/10.4062/biomolther.2018.183
  4. Denisov, I. G., Makris, T. M., Sligar, S. G. and Schlichting, I. (2005) Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253-2278. https://doi.org/10.1021/cr0307143
  5. Dudareva, N., Klempien, A., Muhlemann, J. K. and Kaplan, I. (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16-32. https://doi.org/10.1111/nph.12145
  6. Duisken, M., Benz, D., Peiffer, T. H., Blomeke, B. and Hollender, J. (2005) Metabolism of delta(3)-carene by human cytochrome p450 enzymes: identification and characterization of two new metabolites. Curr. Drug Metab. 6, 593-601. https://doi.org/10.2174/138920005774832614
  7. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  8. Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2015) Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. https://doi.org/10.1016/j.abb.2015.03.025
  9. Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-oligomycin A complex and role of the tryptophan 178 residue. Mol. Cells 39, 211-216. https://doi.org/10.14348/molcells.2016.2226
  10. Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Jeong, D., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2017) Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis. Biochem. Biophys. Res. Commun. 482, 902-908. https://doi.org/10.1016/j.bbrc.2016.11.131
  11. Helfrich, E. J. N., Lin, G.-M., Voigt, C. A. and Clardy, J. (2019) Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 15, 2889-2906. https://doi.org/10.3762/bjoc.15.283
  12. Hernandez-Ortega, A., Vinaixa, M., Zebec, Z., Takano, E. and Scrutton, N. S. (2018) A toolbox for diverse oxyfunctionalisation of monoterpenes. Sci. Rep. 8, 14396.
  13. Hussain, H. A. and Ward, J. M. (2003) Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl. Environ. Microbiol. 69, 373-382. https://doi.org/10.1128/AEM.69.1.373-382.2003
  14. Ikeda, H. and Omura, S. (1997) Avermectin biosynthesis. Chem. Rev. 97, 2591-2610. https://doi.org/10.1021/cr960023p
  15. Kim, V., Kim, D., Lee, S., Lee, G., Lee, S. A., Kang, L. W. and Kim, D. (2022) Structural characterization and fatty acid epoxidation of CYP184A1 from Streptomyces avermitilis. Arch. Biochem. Biophys. 727, 109338.
  16. Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R. and Kelly, S. L. (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem. Biophys. Res. Commun. 307, 610-619. https://doi.org/10.1016/S0006-291X(03)01231-2
  17. Lee, Y., Park, H. G., Kim, V., Cho, M. A., Kim, H., Ho, T. H., Cho, K. S., Lee, I. S. and Kim, D. (2018) Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem. Biol. Interact. 289, 90-97. https://doi.org/10.1016/j.cbi.2018.04.029
  18. Lim, Y. R., Han, S., Kim, J. H., Park, H. G., Lee, G. Y., Le, T. K., Yun, C. H. and Kim, D. (2017) Characterization of a biflaviolin synthase CYP158A3 from Streptomyces avermitilis and its role in the biosynthesis of secondary metabolites. Biomol. Ther. (Seoul) 25, 171-176. https://doi.org/10.4062/biomolther.2016.182
  19. Lin, S., Ma, B., Gao, Q., Yang, J., Lai, G., Lin, R., Yang, B., Han, B. N. and Xu, L. H. (2022) The 16α-hydroxylation of progesterone by cytochrome P450 107X1 from Streptomyces avermitilis. Chem. Biodivers. 19, e202200177.
  20. Louie, K. B., Kosina, S. M., Hu, Y., Otani, H., de Raad, M., Kuftin, A. N., Mouncey, N. J., Bowen, B. P. and Northen, T. R. (2020) Mass spectrometry for natural product discovery. In Comprehensive Natural Products III: Chemistry and Biology, Vol. 6, pp. 263-306. Elsevier.
  21. Lupien, S., Karp, F., Ponnamperuma, K., Wildung, M. and Croteau, R. (1995) Cytochrome P450 limonene hydroxylases of mentha species. Drug Metabol. Drug Interact. 12, 245-260. https://doi.org/10.1515/DMDI.1995.12.3-4.245
  22. Marmulla, R. and Harder, J. (2014) Microbial monoterpene transformations-a review. Front. Microbiol. 5, 346.
  23. O'Keefe, D. P., Tepperman, J. M., Dean, C., Leto, K. J., Erbes, D. L. and Odell, J. T. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105, 473-482. https://doi.org/10.1104/pp.105.2.473
  24. Ortiz de Montellano, P. R. (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932-948. https://doi.org/10.1021/cr9002193
  25. Padayachee, T., Lamb, D. C., Nelson, D. R. and Syed, K. (2023) Structure-function analysis of the biotechnologically important cytochrome P450 107 (CYP107) enzyme family. Biomolecules 13, 1733.
  26. Pandey, B. P., Lee, N., Choi, K. Y., Jung, E., Jeong, D. H. and Kim, B. G. (2011) Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids. Enzyme Microb. Technol. 48, 386-392. https://doi.org/10.1016/j.enzmictec.2011.01.001
  27. Rudolf, J. D., Chang, C. Y., Ma, M. and Shen, B. (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141-1172. https://doi.org/10.1039/C7NP00034K
  28. Schewe, H., Mirata, M. A., Holtmann, D. and Schrader, J. (2011) Biooxidation of monoterpenes with bacterial monooxygenases. Process Biochem. 46, 1885-1899. https://doi.org/10.1016/j.procbio.2011.06.010
  29. Sharrar, A. M., Crits-Christoph, A., Meheust, R., Diamond, S., Starr, E. P. and Banfield, J. F. (2020) Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416-20. https://doi.org/10.1128/mBio.00416-20
  30. Shaya, J., Aloum, L., Lu, C. S., Corridon, P. R., Aoudi, A., Shunnar, A., Alefishat, E. and Petroianu, G. (2023) Theoretical study of hydroxylation of α- and β-pinene by a cytochrome P450 monooxygenase model. Int. J. Mol. Sci. 24, 5150.
  31. Sherman, D. H., Li, S., Yermalitskaya, L. V., Kim, Y., Smith, J. A., Waterman, M. R. and Podust, L. M. (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289-26297. https://doi.org/10.1074/jbc.M605478200
  32. Shrestha, P., Oh, T. J. and Sohng, J. K. (2008) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol. Lett. 30, 1101-1106. https://doi.org/10.1007/s10529-008-9654-0
  33. Tyc, O., Song, C., Dickschat, J. S., Vos, M. and Garbeva, P. (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292. https://doi.org/10.1016/j.tim.2016.12.002
  34. Waksman, S. A. and Henrici, A. T. (1943) The nomenclature and classification of the actinomycetes. J. Bacteriol. 46, 337-341. https://doi.org/10.1128/jb.46.4.337-341.1943
  35. Wong, N. R., Liu, X., Lloyd, H., Colthart, A. M., Ferrazzoli, A. E., Cooper, D. L., Zhuang, Y., Esquea, P., Futcher, J., Pochapsky, T. M., Matthews, J. M. and Pochapsky, T. C. (2018) A new approach to understanding structure-function relationships in cytochromes P450 by targeting terpene metabolism in the wild. J. Inorg. Biochem. 188, 96-101.  https://doi.org/10.1016/j.jinorgbio.2018.08.006